inspect-frequent-spelling-errors-round4
Table of Contents¶
In [1]:
import pandas as pd
pd.options.display.max_rows = 200
import os
In [2]:
dir_ = '/Users/jeriwieringa/Dissertation/drafts/data/spelling-statistics/round4/'
In [3]:
titles = ["ADV", "AmSn", "ARAI", "CE", "CUV", "EDU", "GCB", "GH", "GOH", "GS", "HM", "HR",
"IR", "LB", "LH", "LibM", "LUH", "NMN","PHJ","PTAR","PUR","RH","Sligo","SOL",
"ST","SUW","TCOG","TMM","WMH","YI"]
In [4]:
def results_to_df(title):
for filename in os.listdir(dir_):
if filename.endswith("{}.txt".format(title)):
df = pd.read_csv(dir_ + filename)
df['word_length'] = df['spell_error'].str.len()
return(df)
As the goal here is to identify words that should be added to the spell check list, I am dropping all words with a count of "1" and all single letter words.
In [5]:
def query_df(df, count_value, length_value, sort_by):
return(df.query('count > {} & word_length > {}'.format(count_value, length_value)).sort_values(sort_by, ascending=False))
In [6]:
title = 'ADV'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for ADV: spell_error count word_length 6805 tion 807 4 345 dren 329 4 8406 chil 326 4 4459 educa 323 5 13967 ment 304 4 8620 n't 234 3 5858 ers 208 3 3554 tions 202 5 8709 edu 175 3 10179 pre 174 3 4965 ence 160 4 6314 ple 135 3 10154 mis 135 3 10621 tional 128 6 9562 tian 126 4 853 ith 125 3 9528 ful 112 3 10503 ments 98 5 10823 ent 96 3 7684 ber 96 3 13643 peo 93 3 7142 ofthe 90 5 13878 prin 87 4 10864 ture 84 4 5326 ucation 81 7 7257 struction 74 9 4823 chas 70 4 12444 lege 68 4 15542 ance 68 4 4999 sionary 68 7 1990 ents 67 4 13409 tem 65 3 13980 agt 64 3 3586 ciples 64 6 1020 ary 63 3 921 ble 63 3 12270 ual 58 3 9463 ure 55 3 1797 ference 54 7 8404 bers 52 4 1527 ject 52 4 2843 sys 51 3 2729 instruc 50 7 11096 experi 50 6 196 tle 49 3 4705 coun 49 4 3448 princi 47 6 8834 'll 46 3 7217 knowl 45 5 1841 dustrial 45 8 15997 ning 43 4 2687 accom 43 5 12501 ical 42 4 15325 eral 42 4 6481 prac 42 4 7975 ples 41 4 4601 ters 41 4 166 har 41 3 10144 sloyd 40 5 6903 perience 40 8 9696 cational 40 8 16693 lan 40 3 16430 ork 39 3 11955 oppor 39 5 3870 suc 39 3 149 tained 39 6 420 mer 39 3 13245 lished 39 6 3502 tis 39 3 7184 impor 38 5 10655 hile 38 4 8931 institu 38 7 4095 dif 38 3 939 sions 35 5 16133 tance 35 5 1323 ucational 35 9 781 neces 34 5 3302 estab 34 5 14439 anoka 34 5 1859 ceived 34 6 10554 tjt 33 3 7960 tbe 33 3 11823 ver 33 3 6768 arith 33 5 15626 tunity 32 6 12094 prepara 32 7 6255 sible 31 5 15437 partment 31 8 1290 wil 31 3 6455 dred 31 4 11231 pils 31 4 17002 tary 31 4 16588 proph 31 5 2160 ered 31 4 7200 direc 31 5 2411 dence 30 5 842 jects 30 5 9964 ous 30 3 14996 tlie 30 4 16270 tive 29 4 ... ... ... ... 14571 ington 4 6 14564 'of 4 3 8981 quence 4 6 9008 ofour 4 5 9012 riences 4 7 9050 gradu 4 5 9051 investi 4 7 9077 ’ou 4 3 9098 kankakee 4 8 14437 cident 4 6 9223 nally 4 5 9235 father’s 4 8 14417 txi 4 3 9291 sibilities 4 10 1607 ucators 4 7 14382 strated 4 7 9347 mented 4 6 9436 vis 4 3 14305 lub 4 3 14595 secretaryof 4 11 14611 prindle 4 7 2083 sul 4 3 4667 windham 4 7 14884 ganize 4 6 14868 tainment 4 8 14862 geni 4 4 1412 perma 4 5 8630 arner 4 5 8656 departm 4 7 8671 expi 4 4 4858 slialt 4 6 14785 erence 4 6 8736 citv 4 4 4826 dicate 4 6 14775 wrhat 4 5 1446 tbeir 4 5 4814 ously 4 5 14748 baby’s 4 6 4786 expedted 4 8 14704 tists 4 5 14692 mained 4 6 14691 astrong 4 7 4715 school' 4 7 1460 pers 4 4 14665 sota 4 4 2989 diredt 4 6 4511 jxrir 4 5 14287 kellar 4 6 4510 uncon 4 5 4488 dia 4 3 13727 jno 4 3 1873 cun 4 3 4303 thejr 4 5 13721 servation 4 9 13709 und 4 3 1888 tobin 4 5 9890 tral 4 4 9913 farmington 4 10 4288 gravsville 4 10 1936 foi 4 3 4258 eord 4 4 10035 gbaw 4 4 4211 cesses 4 6 10115 guages 4 6 13584 tenance 4 7 1947 satisfac 4 8 10174 conclu 4 6 4119 oti 4 3 4066 freshies 4 8 1982 dic 4 3 10243 buluwayo 4 8 10284 christain 4 9 10309 'to 4 3 4319 centsayear 4 10 13763 theless 4 7 4338 cuse 4 4 14139 pelled 4 6 4444 clared 4 6 4438 ioi 4 3 1663 jhe 4 3 9591 byr 4 3 4431 blos 4 4 14243 gowdy 4 5 9606 excep 4 5 14224 ves 4 3 9626 expla 4 5 1698 atid 4 4 1770 hol 4 3 13791 fadts 4 5 9660 tials 4 5 9677 thk 4 3 9712 atson 4 5 1775 imi 4 3 13995 clusively 4 9 9723 trons 4 5 9725 amination 4 9 13964 tir 4 3 9747 mbd 4 3 13808 chinery 4 7 11996 mieh 4 4 [1490 rows x 3 columns]
In [7]:
title = 'AmSn'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for AmSn: spell_error count word_length 22881 n't 2138 3 20525 'the 431 4 5986 tion 317 4 12689 seventhday 258 10 30463 indorsed 250 8 43697 'of 232 3 30788 satolli 230 7 14935 employes 208 8 57591 munn 206 4 7727 'll 200 3 35250 religio 195 7 27685 ment 194 4 47657 kee 187 3 1332 cmsar 185 5 21690 indorse 171 7 46929 ringgold 167 8 55394 'to 153 3 6341 breckinridge 146 12 18033 allister 138 8 45304 pre 136 3 51360 bateham 129 7 43047 csar 119 4 21218 schaff 119 6 27616 aleck 112 5 12493 socalled 108 8 47956 erican 107 6 28305 milly 103 5 48878 sentin 103 6 32546 capps 96 5 58932 'is 95 3 33977 tions 94 5 13591 ican 94 4 31801 palmeter 94 8 58 neander 92 7 40884 'that 91 5 35412 're 86 3 28440 eze 84 3 40442 'and 83 4 3341 'in 83 3 46342 've 83 3 59823 sundaylaw 81 9 9881 epworth 81 7 42692 messrs 81 6 114 stundists 81 9 56143 edmunds 80 7 37278 cereola 79 7 19514 chas 79 4 23977 haskins 77 7 21357 thi 76 3 52560 ofthe 75 5 32748 lld 74 3 28194 freethought 67 11 12991 coxey 64 5 12455 connell 63 7 27340 avenola 62 7 2300 endeavorer 59 10 45125 attaches 58 8 9170 ments 58 5 15882 rican 57 5 44605 intrusted 57 9 48111 tional 56 6 37458 anierican 56 9 9722 'not 56 4 54911 paeifie 56 7 6032 candidus 56 8 14519 fifield 56 7 5567 ple 55 3 8285 geikie 54 6 15599 indorsing 54 9 44738 tregelles 54 9 17668 ernment 54 7 16292 employe 53 7 5693 dred 53 4 33027 ity 53 3 729 depew 52 5 47687 krug 51 4 48086 obion 51 5 39056 aivierican 51 10 48366 assoeiation 51 11 55214 englewood 50 9 34162 inthe 50 5 42041 litt 50 4 55772 aro 50 3 27069 cuyler 50 6 57746 wellknown 50 9 55693 sabbaththe 50 10 40575 mallett 48 7 39495 leiper 48 6 23741 tian 48 4 32400 cathedra 47 8 30232 opposers 47 8 30015 medo 46 4 40613 'be 46 3 40369 ent 45 3 52072 kai 45 3 34852 sundayclosing 45 13 29829 stuttle 44 7 18206 forit 44 5 39807 judefind 44 8 19273 keane 44 5 ... ... ... ... 13666 ublished 4 8 37236 banishments 4 11 46641 'human 4 6 48707 epi 4 3 14494 irs 4 3 15234 spiritand 4 9 15179 'render 4 7 23889 shbnah 4 6 15134 'earth 4 6 46068 'worship 4 8 37357 beauti 4 6 15033 libertythat 4 11 37346 ganization 4 10 14972 principlea 4 10 14910 mur 4 3 23931 cas 4 3 46207 craham 4 6 23970 oneman 4 6 14847 kingd 4 5 24027 rality 4 6 14782 'general 4 8 14776 mens 4 4 14732 pocus 4 5 46344 beand 4 5 14730 intermeddler 4 12 14726 legislati 4 9 46426 ballentine 4 10 14645 bouvier 4 7 37258 holydays 4 8 14612 bickerings 4 10 24192 tures 4 5 46597 koenig 4 6 46601 lene 4 4 14549 tious 4 5 47457 selfstyled 4 10 36877 godlikeness 4 11 13655 errone 4 6 47529 eccle 4 5 48097 bestto 4 6 36459 gert 4 4 48116 wie 4 3 12564 fiftyfirst 4 10 48197 thf 4 3 36458 answera 4 7 48246 twentyseven 4 11 12553 peoplenot 4 9 36445 sanctities 4 10 48347 catholie 4 8 12418 delambre 4 8 48367 faiththe 4 8 36426 acific 4 6 48407 intyre 4 6 12413 'much 4 5 24739 powe 4 4 36347 statemanship 4 12 12279 eign 4 4 12275 ormed 4 5 12171 amv 4 3 11993 discernable 4 11 48516 dror 4 4 11916 olneyville 4 10 24809 itdividual 4 10 11892 'ye 4 3 48617 ited 4 4 11881 purpo 4 5 36305 innes 4 5 11797 sonship 4 7 24716 cisions 4 7 12814 yosemit 4 7 12931 consciencethis 4 14 36683 theonly 4 7 13602 ather 4 5 13600 democratism 4 11 13566 sawbath 4 7 24478 frse 4 4 47647 protectories 4 12 36826 caulay 4 6 47690 lishing 4 7 24667 charleton 4 9 13351 publishkng 4 10 47734 fica 4 4 24701 oom 4 3 47746 rer 4 3 47762 hol 4 3 36660 cus 4 3 13061 nrs 4 3 47810 fastwill 4 8 36652 appre 4 5 36617 snd 4 3 47878 tured 4 5 13300 hackmen 4 7 36609 suger 4 5 36533 thig 4 4 47931 engler 4 6 13166 philomath 4 9 13071 sabbatizing 4 11 47968 oal 4 3 47976 king' 4 5 36522 thisis 4 6 30490 moen 4 4 [3381 rows x 3 columns]
In [8]:
title = 'ARAI'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for ARAI: spell_error count word_length 162 rockyhill 9 9 467 stowell 8 7 455 cheo 7 4 226 k'o 7 3 476 sha 6 3 341 parana 6 6 453 friedenstal 6 11 494 nyanza 5 6 295 mch 5 3 119 chitonga 5 8 409 nyassa 5 6 411 solusi 4 6 20 gnedjen 4 7 393 kavirondo 4 9 202 vuasu 4 5 160 majita 4 6 123 rentfro 4 7 350 somabula 4 8
In [9]:
title = 'CE'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for CE: spell_error count word_length 8780 n't 727 3 195 'll 162 3 7207 manumental 133 10 1408 kibbin 56 6 7387 adelphian 52 9 236 've 52 3 6995 tion 45 4 2986 millis 44 6 4171 tis 43 3 5404 're 42 3 213 tle 37 3 1158 tne 26 3 6648 ginn 26 4 958 ful 26 3 4925 nurses' 24 7 5580 claxton 24 7 396 dren 24 4 4485 murry 24 5 6502 delpha 23 6 1571 pre 23 3 1989 lusio 22 5 1692 dioxid 22 6 4415 wyclif 22 6 8195 myrta 22 5 8289 revell 21 6 4874 lomb 20 4 4965 flexner 20 7 5217 sheyenne 20 8 4227 maplewood 20 9 5570 taquary 20 7 1760 tunesassa 20 9 8572 chil 20 4 7377 'ry 20 3 5160 goldsberry 20 10 502 lippincott 19 10 6160 'the 19 4 6867 ers 19 3 970 preceptresses 19 13 2741 bausch 18 6 52 lul 18 3 623 hildebran 18 9 5396 ment 17 4 7889 ber 17 3 739 mvp 16 3 6996 mvo 16 3 828 plainview 16 9 3222 laurelwood 16 10 6503 imo 15 3 3694 tions 15 5 7005 eufola 14 6 6621 anb 14 3 346 haapai 14 6 7209 teacherage 13 10 204 cready 13 6 8179 sus 13 3 1548 mis 13 3 5999 seventhday 13 10 5674 syllabi 13 7 5308 prin 13 4 482 mer 13 3 4547 rowell 13 6 1709 'to 12 3 2267 ture 12 4 341 sloyd 11 5 5992 'of 11 3 318 ight 11 4 3910 kernelocorn 11 11 4847 exousia 11 7 5075 halfyear 11 8 76 adventista 11 10 6484 it' 10 3 848 vis 10 3 7016 eldredge 10 8 8178 jarnboas 10 8 8381 eze 10 3 6246 thos 10 4 3410 bez 10 3 7484 ioo 10 3 6147 seventhand 10 10 3676 tio 10 3 2304 colegio 10 7 3787 waikato 10 7 1018 sions 10 5 8126 ovalau 10 6 2607 lornedale 10 9 2211 sul 10 3 1768 latshaw 10 7 7900 ver 10 3 5448 dont 10 4 4893 jes 10 3 490 iiii 10 4 4566 hillcrest 9 9 4778 ther 9 4 3154 divi 9 4 5936 churchschool 9 12 4524 sirable 9 7 3436 nyhyttan 9 8 5764 ade 9 3 1486 buresala 9 8 1248 welltrained 9 11 ... ... ... ... 465 pursual 5 7 5856 sixtyfive 5 9 4865 tbe 5 3 4873 coun 4 4 8660 fortyfive 4 9 1111 brenke 4 6 4474 sangster 4 8 7938 dishwashing 4 11 2092 ents 4 4 8588 fernwood 4 8 8637 ral 4 3 5133 tra 4 3 7816 sayce 4 5 1070 sirup 4 5 1959 priori 4 6 7752 freeset 4 7 4460 baro 4 4 4418 goodloe 4 7 639 memoriam 4 8 5202 sionary 4 7 2320 flow'rs 4 7 7598 beauti 4 6 8700 farreaching 4 11 8570 bers 4 4 1053 burmans 4 7 1560 burdett 4 7 1912 wheatless 4 9 1473 mee 4 3 8481 dinsmore 4 8 992 tian 4 4 8342 tubere 4 6 1613 mmmmmm 4 6 1448 fitchburg 4 9 1661 ecole 4 5 1676 voyce 4 5 1679 loth 4 4 945 ith 4 3 4752 untechnical 4 11 7515 duqoin 4 6 4922 preeeptresses 4 13 1197 allround 4 8 4931 academie 4 8 4848 teachers' 4 9 56 wel 4 3 1866 unpedagogical 4 13 5001 'neath 4 6 8147 eighthgrade 4 11 5298 'em 4 3 2372 wirt 4 4 7457 ove 4 3 5702 dunamis 4 7 3082 serampur 4 8 5724 connell 4 7 3084 crowell 4 7 3108 wiggin 4 6 3166 gillott 4 7 6565 ucation 4 7 5787 bab 4 3 3269 excellences 4 11 3280 postum 4 6 3301 milner 4 6 6444 boundarylines 4 13 4070 farland 4 7 3320 wellregulated 4 13 3398 ordinating 4 10 3476 hilprecht 4 9 6221 robie 4 5 3521 nally 4 5 5843 harlen 4 6 3586 oth 4 3 3636 aik 4 3 4051 timehonored 4 11 5874 patsey 4 6 6662 prac 4 4 6664 ulty 4 4 6714 homiletical 4 11 4137 afe 4 3 7456 sidewise 4 8 5964 tetzlaff 4 8 5323 'it 4 3 7354 flagg 4 5 7323 das 4 3 2490 tuitions 4 8 4170 openair 4 7 2674 sabbathschool 4 13 5450 literatures 4 11 2800 'that 4 5 7071 ies 4 3 3068 twelvegrade 4 11 7039 owne 4 4 2821 trilliums 4 9 2888 mit 4 3 2952 cli 4 3 2978 proteid 4 7 6912 splain 4 6 6909 'twould 4 7 5583 godfearing 4 10 6868 lation 4 6 4843 fehling 4 7 1058 parentteacher 4 13 [341 rows x 3 columns]
In [10]:
title = 'CUV'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for CUV: spell_error count word_length 13919 ppf 2144 3 25398 'the 510 4 16367 brownlee 459 8 20052 chas 446 4 10106 sabbathschool 362 13 20788 luzerne 361 7 44554 'of 332 3 13057 seventhday 324 10 46923 reichenbach 312 11 2780 elphatrick 307 10 15194 morgantown 240 10 44576 buttermore 232 10 41310 'and 229 4 56418 'to 216 3 20403 leesburg 212 8 17184 bfl 208 3 40409 barto 206 5 26122 columbiana 204 10 19271 hicksville 199 10 48767 gearhart 199 8 57941 paden 198 5 37636 oertley 187 7 35831 syphers 182 7 20825 yingling 182 8 48291 phila 173 5 33894 dowell 173 6 44209 tolliver 170 8 49251 dowling 170 7 55177 conneaut 169 8 4230 westmoreland 168 12 11915 charloe 166 7 61891 broughton 159 9 49726 pengelly 157 8 34476 meigs 155 5 43721 dunkinson 150 9 37481 tion 148 4 12967 corry 147 5 24454 apsley 147 6 32656 silber 145 6 44853 barnesville 142 11 19894 lehigh 142 6 25821 massillon 141 9 24914 pre 138 3 7090 gerhart 138 7 55700 brownell 137 8 44763 smithsburg 136 10 62599 wanteda 134 7 3051 midkiff 133 7 42654 stroudsburg 131 11 33542 kohr 126 4 4561 tioga 126 5 39973 harford 125 7 3421 'in 124 3 41492 'be 123 3 62057 zimmerly 116 8 9630 richland 115 8 21950 thi 115 3 8395 maloney 111 7 36874 eusey 109 5 20306 mingo 108 5 112 searles 108 7 53621 mahoning 106 8 30013 cabell 103 6 19229 pemberville 103 11 53562 ofthe 102 5 11076 bookmen 101 7 25036 muskingum 101 9 57794 braxton 100 7 20358 isitor 99 6 11455 carbondale 98 10 29889 greenspring 97 11 49597 cobr 97 4 51886 gordonsville 96 12 44508 wytheville 96 10 29347 marysville 95 10 14228 pickaway 95 8 40000 paulding 95 8 54282 meadville 94 9 41740 'that 93 5 36965 ashtabula 93 9 24323 sayre 92 5 28052 carthy 92 6 42365 hubbell 92 7 36383 heaton 91 6 22290 bentz 90 5 55583 wellsboro 90 9 47723 vanzant 90 7 9937 bassler 89 7 32527 fairhill 88 8 55232 mis 88 3 7192 blest 88 5 16898 rager 85 5 53012 garmo 85 5 6472 cuyahoga 84 8 62491 miscl 84 5 45618 honesdale 83 9 14254 twentyfive 83 10 29827 eachern 83 7 23868 conwell 82 7 3833 monongalia 82 10 ... ... ... ... 28591 gestions 4 8 28579 'members 4 8 28535 osed 4 4 28497 rii 4 3 28496 recanvassing 4 12 32431 'near 4 5 32497 missionory 4 10 38127 ris 4 3 35948 'sin 4 4 36597 edito 4 5 36445 ular 4 4 36366 chlo 4 4 36283 ttt 4 3 36082 religio 4 7 36081 lyconing 4 8 36057 firstday 4 8 35992 'boys 4 5 35962 mohler 4 6 35927 cti 4 3 35159 againit 4 7 35857 'cents 4 6 35843 springlield 4 11 35752 affort 4 6 35664 'carry 4 6 35501 emmons 4 6 35480 'connection 4 11 35426 murry 4 5 35258 prayermeeting 4 13 35232 elvaton 4 7 36642 fbr 4 3 36899 tihe 4 4 36925 conw 4 4 37015 youwill 4 7 37965 misel 4 5 37963 gli 4 3 37959 'part 4 5 37900 sil 4 3 37871 lord' 4 5 37836 'took 4 5 37793 birt 4 4 37750 bordentown 4 10 37611 weat 4 4 37499 appre 4 5 37469 uernon 4 6 37436 excutive 4 8 37411 mookerjie 4 9 37388 reiehenbach 4 11 37380 peoplein 4 8 37287 'place 4 6 37191 agents' 4 7 37174 kil 4 3 37027 alio 4 4 35224 nol 4 3 35131 ruthenians 4 10 32689 oon 4 3 33282 ommittee 4 8 33747 othet 4 5 33712 appr 4 4 33692 summitt 4 7 33601 landmuckfrom 4 12 33474 bre 4 3 33463 gouldsboro 4 10 33431 worldthe 4 8 33349 hord 4 4 33290 confe 4 5 33246 'showed 4 7 35035 'alone 4 6 33219 'important 4 10 33192 winn 4 4 33180 agusta 4 6 33035 someof 4 6 33028 trict 4 5 33015 lura 4 4 33014 whytsell 4 8 32958 timeand 4 7 32794 wenty 4 5 33763 cohm 4 4 33809 allene 4 6 33858 dre 4 3 33898 ior 4 3 35032 sickler 4 7 35003 depositaries 4 12 34993 thefollowing 4 12 34911 theth 4 5 34511 humphries 4 9 34441 whichwe 4 7 34435 camerata 4 8 34412 judiasm 4 7 34407 'up 4 3 34393 kly 4 3 34330 gation 4 6 34292 ourwork 4 7 34281 clementon 4 9 34271 loveof 4 6 34238 exe 4 3 34182 repot 4 5 34125 rigby 4 5 34115 geade 4 5 34035 diegel 4 6 62810 structed 4 8 [3794 rows x 3 columns]
In [11]:
title = 'EDU'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for EDU: spell_error count word_length 315 sloyd 29 5 2166 bamberger 13 9 2471 tion 12 4 1920 salomon 11 7 364 dep't 11 5 1125 pre 10 3 2519 abrahamson 9 10 959 'the 8 4 924 pub'g 8 5 1772 anb 7 3 2111 cator 7 5 790 ment 7 4 2419 publicschool 6 12 2925 educa 6 5 1783 thr 6 3 1850 naas 6 4 2676 majestatsbeleidigung 5 20 2760 perlen 5 6 2275 mit 5 3 2815 'of 5 3 15 morrill 5 7 1786 brownell 5 8 1592 frederikshavn 5 13 1469 education' 5 10 1330 edu 5 3 106 tiie 4 4 2569 educato 4 7 166 ture 4 4 258 tional 4 6 2810 vergil 4 6 2798 dingley 4 7 441 whatley 4 7 582 tre 4 3 1038 'and 4 4 2523 don'ts 4 6 2057 micr 4 4 2483 chas 4 4 1436 cygnaeus 4 8 2317 dhi 4 3 2228 lan 4 3 2992 ent 4 3
In [12]:
title = 'GCB'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for GCB: spell_error count word_length 24302 tion 679 4 40181 gcs 436 3 38395 ence 346 4 36370 'the 338 4 42459 ference 289 7 41860 ment 240 4 37146 'of 232 3 31501 ple 186 3 24655 sabbathschool 179 13 26374 'to 166 3 24315 ers 161 3 24659 tions 149 5 42400 eral 146 4 29039 basle 130 5 13869 'be 130 3 40618 chas 127 4 22087 mittee 121 6 15788 seventhday 111 10 35805 ulletin 109 7 8647 'and 109 4 25443 'in 104 3 31065 pre 103 3 21205 sionary 100 7 17212 mis 100 3 6908 amens 85 5 7977 ent 76 3 43210 ren 75 3 20925 ile 72 3 38708 ences 72 5 27563 tional 72 6 2573 'that 71 5 35810 agt 71 3 37530 weiherweg 71 9 18885 ments 67 5 24306 ber 67 3 38577 ary 62 3 17636 lieve 60 5 3381 sabbathkeepers 60 14 41334 peo 60 3 27475 ture 58 4 23152 partment 56 8 33824 'for 56 4 15849 eign 56 4 24241 ful 55 3 2804 'by 54 3 33586 ferences 54 8 2135 dred 53 4 14159 sions 52 5 3133 bers 52 4 2614 inthe 52 5 19585 ized 50 4 17721 'we 50 3 2072 tle 50 3 4368 thi 49 3 13997 akersgaden 48 10 3617 canv 47 4 18810 ters 47 4 21227 ical 45 4 8457 prin 44 4 33728 'is 44 3 21993 sabbathschools 44 14 5220 'have 43 5 30226 ciples 42 6 2261 tem 42 3 4355 'but 41 4 37731 taranaki 41 8 35793 ning 41 4 28477 cutchen 41 7 9115 campmeetings 40 12 6985 'work 40 5 36171 ern 40 3 24909 brunson 40 7 21153 dren 40 4 33487 ity 39 3 10190 tian 39 4 26399 correo 38 6 39355 tive 38 4 40619 sented 38 6 12562 bourke 38 6 22971 'been 38 5 26460 ofthe 37 5 37881 raratonga 36 9 3719 'as 36 3 36429 ioo 36 3 43482 clure 35 5 29900 ican 35 4 3345 sible 35 5 18834 cial 35 4 16266 shiba 35 5 1811 hildebran 35 9 17146 fifield 35 7 20134 rethe 35 5 24293 conthe 35 6 31618 dailybulletin 34 13 40716 tothe 34 5 3901 kee 34 3 2164 erty 33 4 12247 mal 33 3 40543 fora 33 4 33817 ceived 32 6 ... ... ... ... 11914 overing 4 7 11797 nueva 4 5 11772 thework 4 7 14372 overthe 4 7 14467 bahler 4 6 31838 conpeople 4 9 17047 apand 4 5 17423 herethe 4 7 17267 thc 4 3 17236 tempation 4 9 17202 'territory 4 10 17194 peoa 4 4 17157 asuncion 4 8 32609 ihave 4 5 17070 standthe 4 8 17066 sto 4 3 32672 sinlessness 4 11 17496 nominationsr 4 12 17040 to' 4 3 16977 terly 4 5 16962 'new 4 4 16945 stantial 4 8 16828 prieser 4 7 16793 harthe 4 6 32838 thisthe 4 7 16776 departthe 4 9 32848 gle 4 3 32309 inour 4 5 32275 retheir 4 7 32898 'thousand 4 9 18198 gerona 4 6 18668 burmah 4 6 18646 himselfthe 4 10 31878 'sent 4 5 18357 peoof 4 5 31983 iences 4 6 18352 bogota 4 6 18306 kjellman 4 8 32043 asthe 4 5 32058 veloped 4 7 32069 hinderance 4 10 17603 mesto 4 5 18096 zations 4 7 17976 sprohge 4 7 17943 'year 4 5 32167 mising 4 6 17941 vith 4 4 17758 misand 4 6 17610 saleof 4 6 32239 beis 4 4 32252 kirkle 4 6 16762 dantly 4 6 32903 fested 4 6 14478 conever 4 7 15368 pra 4 3 15768 'daily 4 6 33409 keiskama 4 8 33457 tuxen 4 5 15737 swiggart 4 8 15553 'training 4 9 33495 connec 4 6 15521 sonship 4 7 15485 vartija 4 7 15453 heavenlies 4 10 15219 preciation 4 10 15819 elffers 4 7 15186 tralasian 4 9 33644 neander 4 7 33676 erning 4 6 15084 conmake 4 7 14831 diningroom 4 10 14772 reour 4 5 33786 'man 4 4 33796 tinually 4 8 14533 geheimnis 4 9 15796 maxon 4 5 33332 papanui 4 7 32906 laplandish 4 10 16497 'doing 4 6 16663 cisely 4 6 16658 farrer 4 6 32981 foland 4 6 32983 ured 4 4 16625 gideonites 4 10 16596 ticed 4 5 16513 pointment 4 9 33032 rael 4 4 33074 ishing 4 6 16452 sota 4 4 15903 ''the 4 5 16368 imthat 4 6 16247 godand 4 6 33158 lletin 4 6 16244 manity 4 6 16200 wherethe 4 8 33243 merly 4 5 16004 'business 4 9 15960 michigani 4 9 33299 wildgrube 4 9 22045 'mission 4 8 [2376 rows x 3 columns]
In [13]:
title = 'GH'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for GH: spell_error count word_length 26162 smouse 177 6 26702 'the 153 4 24283 schramm 113 7 268 thot 107 4 16496 'of 104 3 18531 jno 99 3 22762 chas 92 4 20048 lintonia 82 8 3106 tion 75 4 5571 'to 75 3 11071 altho 72 5 10755 'and 72 4 452 calmar 66 6 24046 brot 65 4 3395 maynor 62 6 10348 strother 55 8 4752 gos 54 3 16306 eze 51 3 11342 'em 50 3 21187 mis 46 3 11245 pre 46 3 20415 'in 45 3 5388 thi 44 3 24252 ment 44 4 5612 spartanburg 41 11 7875 wilsonia 41 8 20836 gemon 40 5 13581 corsicana 40 9 22388 wagor 39 5 17544 thos 39 4 7583 newbern 38 7 21881 ohe 37 3 5992 brethern 37 8 6405 ocala 37 5 18610 ospe 37 4 16684 vagh 36 4 16728 preceeding 36 10 13719 orangeburg 36 10 3243 'that 34 5 26195 dont 34 4 7749 ospel 34 5 4935 oclock 32 6 3120 ers 32 3 11858 pel 31 3 14738 'for 31 4 16603 abney 31 5 3298 inthe 30 5 5138 tir 30 3 3127 ments 29 5 17880 ioo 29 3 3111 ber 29 3 14898 ood 28 3 20104 ence 28 4 8354 'are 27 4 20998 seventhday 27 10 14607 'is 27 3 11519 mal 26 3 3021 ful 26 3 6459 ent 26 3 3522 tions 26 5 5669 ofthe 26 5 11284 thots 25 5 8640 ference 25 7 15692 palo 25 4 3989 palatka 25 7 16954 thes 24 4 18373 selfdenial 24 10 17584 ern 24 3 17549 ple 23 3 576 simons 23 6 25136 whetsel 23 7 11163 blest 22 5 4770 'not 22 4 26044 sionary 22 7 1679 ver 21 3 7448 kno 21 3 21027 sabbathschool 21 13 25955 gorda 21 5 26330 cleburne 21 8 17323 'be 21 3 19146 austell 21 7 3905 tothe 21 5 20894 sel 21 3 21883 'it 20 3 14089 erald 20 5 6952 ves 20 3 10003 'have 20 5 570 loth 20 4 13777 mer 20 3 21831 'we 19 3 7794 ren 19 3 6711 olvin 19 5 4441 psa 19 3 1954 brack 19 5 13871 devalls 19 7 5396 punta 19 5 3589 kittie 18 6 4180 whi 18 3 11799 ville 18 5 7170 'this 18 5 ... ... ... ... 11222 tery 4 4 13451 plete 4 5 8771 loomis 4 6 16644 stangood 4 8 21355 'such 4 5 8656 neces 4 5 20113 ands 4 4 5090 'hundred 4 8 5112 hayti 4 5 20015 simonds 4 7 19972 saken 4 5 5169 tay 4 3 5178 pigott 4 6 5181 depew 4 5 5291 tice 4 4 5327 authur 4 6 5397 mrand 4 5 5579 pla 4 3 19719 hinchcliff 4 10 5646 busines 4 7 5651 cuyler 4 6 19618 vith 4 4 5762 eralo 4 5 19428 the' 4 4 19395 woodall 4 7 19354 chrichlow 4 9 19281 iff 4 3 20185 vicks 4 5 5067 'come 4 5 4956 aaa 4 3 20638 prehaps 4 7 3560 nesmith 4 7 3662 gress 4 5 21125 pia 4 3 20875 knowlege 4 8 4200 wyandottes 4 10 20820 'himself 4 8 20748 ditions 4 7 4335 froin 4 5 20658 purty 4 5 4344 shouldbe 4 8 4949 hyman 4 5 20552 gossage 4 7 4400 kirkwood 4 8 4427 workin 4 6 20503 figtree 4 7 4497 worthen 4 7 20452 of'the 4 6 4555 vitamines 4 9 20357 'doing 4 6 4929 aving 4 5 6237 mony 4 4 6475 knowed 4 6 19022 wiseman 4 7 17146 beilby 4 6 7569 'said 4 5 17450 aniong 4 6 17382 maren 4 5 7837 aubigne 4 7 17369 elzirah 4 7 8030 cbe 4 3 8228 ories 4 5 17168 iiiii 4 5 17155 kerns 4 5 8245 twentyone 4 9 17543 bas 4 3 8251 gertie 4 6 8305 espie 4 5 8396 'could 4 6 16955 ata 4 3 16880 georgie 4 7 8562 cormick 4 7 16721 dif 4 3 8622 ath 4 3 8643 sie 4 3 17510 ial 4 3 7320 ered 4 4 6483 couraging 4 9 6846 gospet 4 6 18836 ierald 4 6 6594 dearmon 4 7 18720 aweary 4 6 18712 hewas 4 5 18632 nutt 4 4 6708 willbe 4 6 18396 rishel 4 6 18391 gosp 4 4 6844 ragan 4 5 18187 nian 4 4 7298 krag 4 4 7050 iord 4 4 7069 arenow 4 6 18017 pilkington 4 10 7070 sisson 4 6 7119 ottr 4 4 7127 ventists 4 8 7133 willacoochee 4 12 17737 hedin 4 5 7241 ough 4 4 13173 cism 4 4 [1025 rows x 3 columns]
In [14]:
title = 'GOH'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for GOH: spell_error count word_length 1063 nuttose 51 7 1553 bromose 24 7 2597 abbie 20 5 1316 nuttolene 19 9 71 lauretta 18 8 796 protose 14 7 336 lenna 13 5 1320 mackey 12 6 2532 gruels 10 6 2106 chas 10 4 1191 gos 10 3 2288 tion 10 4 1702 drs 10 3 1527 pel 10 3 865 'the 9 4 661 'in 8 3 1719 princi 8 6 2623 ansh 7 4 327 bouchard 7 8 942 tarium 7 6 1581 mynheer 7 7 1027 croutons 7 8 2073 proteids 7 8 1390 evelene 6 7 1860 'to 6 3 28 dqq 6 3 1043 sel 6 3 972 fredrickshavn 6 13 949 'and 6 4 2433 eze 6 3 2450 onehalf 6 7 424 comfortables 6 12 2453 maltol 6 6 281 jir 6 3 2015 strychnin 5 9 2236 fora 5 4 1958 sitz 5 4 1807 fik 5 3 1720 institut 5 8 2251 sani 5 4 1365 selfdenial 5 10 1714 fft 5 3 1213 heiman 5 6 597 flich 5 5 1189 warne 5 5 2773 thi 5 3 55 dulness 5 7 1956 nux 4 3 2002 allready 4 8 2744 healthdestroying 4 16 2717 schillembeck 4 12 307 lightplant 4 10 348 health' 4 7 394 fatand 4 6 413 lindstrom 4 9 484 vomica 4 6 2415 excrementitious 4 15 2385 seventhday 4 10 798 albumins 4 8 1644 mal 4 3 1033 pre 4 3 1085 'for 4 4 1088 bromo 4 5 1240 ood 4 3 2009 rlich 4 5 985 teachout 4 8
In [15]:
title = 'GS'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for GS: spell_error count word_length 6257 'the 181 4 4423 'of 124 3 12013 aro 111 3 4173 eze 75 3 7908 'to 64 3 15169 'and 63 4 12885 ile 55 3 15862 pre 50 3 13040 ots 47 3 13239 tion 45 4 9558 elds 44 4 9186 timethe 40 7 1689 'is 32 3 4605 'that 32 5 10018 'in 31 3 2806 mal 31 3 15354 ment 30 4 14207 'be 28 3 3879 gospxi 26 6 8048 ofthe 24 5 7658 thi 23 3 6951 ets 22 3 13061 cer 22 3 8082 ehe 21 3 8466 mosheim 21 7 1207 heylyn 21 6 6778 gos 21 3 10868 seventhday 20 10 12373 iow 20 3 11713 'are 19 4 13826 sabbaton 19 8 8764 'he 18 3 7610 haruest 17 7 13056 ble 17 3 7465 'not 17 4 7408 'with 17 5 12985 wharey 16 6 11184 sel 16 3 5987 'his 16 4 5348 glynn 16 5 14511 'it 16 3 16242 pxi 16 3 6577 'as 16 3 539 blest 16 5 15536 ise 16 3 1862 'for 15 4 2425 ver 15 3 18041 'which 15 6 12378 goapxl 15 6 13090 schaff 15 6 14016 'have 14 5 6442 fon 14 3 13163 mor 14 3 18555 goapx 14 5 12539 'will 14 5 5037 'by 13 3 4684 inthe 13 5 10903 sabbathschool 13 13 14177 'all 13 4 4572 vor 13 3 14174 shabbath 13 8 1505 northfield 13 10 2221 goapxi 12 6 572 sigkix 12 6 5985 whi 12 3 6550 berthier 12 8 8564 abrahamic 12 9 15909 'at 12 3 14237 kno 12 3 14637 medo 12 4 10595 thermo 11 6 7296 ple 11 3 6348 ved 11 3 4607 gosp 11 4 12797 gesenius 11 8 1272 ity 11 3 6215 sho 11 3 13910 thd 11 3 1196 'our 11 4 4858 dowling 10 7 11254 murdock 10 7 16947 thr 10 3 13932 chri 10 4 18596 firstday 10 8 10753 wor 10 3 10166 'from 10 5 14405 gop 10 3 7085 vox 10 3 7657 eemperance 10 10 8595 thein 10 5 14178 'this 10 5 5159 shust 10 5 11885 olshausen 10 9 1909 sundaykeeping 10 13 6711 bateham 10 7 9383 neander 10 7 4584 sigklx 9 6 7002 'they 9 5 11782 'upon 9 5 2309 overcomers 9 10 ... ... ... ... 6044 haue 4 4 6094 swedena 4 7 6139 igk 4 3 2946 perfeet 4 7 2516 religio 4 7 6713 mina 4 4 1034 rumseller 4 9 201 popo 4 4 228 ving 4 4 348 wisco 4 5 395 'more 4 5 437 sabbathday 4 10 548 thq 4 3 708 eecl 4 4 779 onio 4 4 787 'many 4 5 811 corea 4 5 864 sigkl 4 5 883 'seventh 4 8 1024 'no 4 3 1173 themsel 4 7 2493 'etc 4 4 1217 goapi 4 5 1337 phocas 4 6 1558 royalton 4 8 1600 ght 4 3 1649 ture 4 4 1690 'change 4 7 1786 ople 4 4 1819 ged 4 3 1915 laurvig 4 7 1952 heruli 4 6 2058 jeddo 4 5 2157 translat 4 8 2377 'first 4 6 6253 peopie 4 6 6785 nant 4 4 13364 ingulfed 4 8 11668 gilfillan 4 9 10576 sio 4 3 10590 dungan 4 6 10723 hershe 4 6 10772 'country 4 8 10886 'earth 4 6 11080 atalissa 4 8 11105 vers 4 4 11118 leitchfield 4 11 11203 urrection 4 9 11409 ohe 4 3 11417 ohl 4 3 11499 sabbathbreaking 4 15 11563 ehristian 4 9 12009 yehovah 4 7 10424 'last 4 5 12030 wledge 4 6 12170 'been 4 5 12501 o'f 4 3 12532 elie 4 4 12653 ofhis 4 5 12690 pointments 4 10 12867 doetrine 4 8 12899 ove 4 3 12986 peaceableness 4 13 13029 againat 4 7 13116 kuriakos 4 8 13187 'gospel 4 7 13237 'does 4 5 10574 giv 4 3 10293 oeo 4 3 6860 decretalia 4 10 8797 tentmeetings 4 12 6871 tirosh 4 6 7011 olean 4 5 7257 tution 4 6 7360 tay 4 3 7502 morrice 4 7 7564 hinderance 4 10 7896 catherines 4 10 7980 blo 4 3 8068 ligion 4 6 8306 harrisonville 4 13 8307 ohuroh 4 6 8545 ars 4 3 8610 the' 4 4 8828 thitt 4 5 10253 pgr 4 3 9014 'true 4 5 9038 'us 4 3 9245 'cent 4 5 9417 gowen 4 5 9452 th'e 4 4 9500 hiin 4 4 9567 oro 4 3 9691 giustianni 4 10 9720 gustafson 4 9 9843 longimanus 4 10 9879 anabaino 4 8 10057 alr 4 3 10104 nearl 4 5 18794 'mid 4 4 [488 rows x 3 columns]
In [18]:
title = 'HM'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for HM: spell_error count word_length 5175 gen'l 102 5 6604 durand 97 6 5407 rep't 92 5 435 miscel 79 6 8413 am't 76 4 6180 avenola 76 7 2387 mis 76 3 4402 l't 64 3 3674 cumb 62 4 7453 imlay 57 5 1400 canof 56 5 6032 cassopolis 55 10 630 raiatea 51 7 438 seventhday 49 10 5005 intyre 43 6 2404 aro 43 3 8589 dist's 41 6 1036 schoolcraft 41 11 5697 agt 39 3 866 scand 38 5 2824 wheatena 37 8 6495 vassers 36 7 7911 lehigh 36 6 5797 hayti 35 5 6953 revassers 35 9 6657 'the 34 4 2820 sabbathschool 33 13 8887 deliv 33 5 6758 raratonga 32 9 6635 sabbathkeepers 30 14 3991 bogota 29 6 8095 sendebud 28 8 6412 deliv'd 28 7 4370 susp'n 28 6 4955 tena 28 4 4296 chas 27 4 5404 bordoville 27 10 8910 tion 27 4 9153 riverton 26 8 7520 grandville 26 10 176 mundy 26 5 9898 watrousville 26 12 9029 greenleaf 26 9 1816 farmington 26 10 7604 pierson 25 7 2842 eddyville 25 9 1948 elkhorn 25 7 2334 vaktare 25 7 7776 grinnell 25 8 1444 mor 25 3 4091 pierrepont 25 10 8135 centerville 25 11 8748 afton 25 5 1676 richford 24 8 4005 danvers 24 7 9479 smithland 24 9 2167 coldwater 24 9 3939 charlemont 24 10 4732 morrice 24 7 8875 springside 24 10 3597 fbr 24 3 4929 castana 24 7 2027 lakeview 24 8 6059 alaiedon 24 8 8317 gowen 23 5 3021 ruthven 23 7 5274 stauffer 23 8 3874 vilas 23 5 1079 kitts 23 5 4602 scottville 23 10 4927 waukon 23 6 5624 pre 23 3 2927 elmwood 22 7 6962 saranac 22 7 4382 lmtd 22 4 921 sunbury 22 7 1522 sandyville 22 10 1067 wamego 22 6 4289 ceresco 22 7 1711 vergennes 22 9 7289 middlebury 21 10 1526 evangeliets 21 11 4191 blendon 21 7 1321 sextonville 21 11 4593 webberville 21 11 8494 sinclairville 21 13 3164 jeddo 21 5 3642 vermontville 21 12 1588 edinboro 20 8 1624 parkville 20 9 5738 twentyfive 20 10 5216 eze 20 3 5207 sedalia 20 7 953 childstown 20 10 1194 satolli 20 7 9918 grangeville 20 11 4059 almira 20 6 9590 brookings 20 9 8807 'of 20 3 4284 ladonia 20 7 ... ... ... ... 5889 spanishspeaking 4 15 2295 cept 4 4 5958 pmpmpm 4 6 1689 bloomville 4 10 5995 avoca 4 5 2355 nanson 4 6 6167 alpharetta 4 10 6179 ong 4 3 6186 follo 4 5 1496 ili 4 3 6363 'there 4 6 1735 misha 4 5 4250 thein 4 5 6436 stremann 4 8 1402 ithe 4 4 6502 intrust 4 7 6507 nig't 4 5 6514 thirtyfive 4 10 6533 walkerton 4 9 6564 nyassa 4 6 1376 wallowa 4 7 6613 shawmut 4 7 5837 ure 4 3 2278 sanningens 4 10 8534 iss 4 3 5296 thirtythree 4 11 2147 dixo 4 4 2122 apeth 4 5 4943 eldred 4 6 2159 frederikshavn 4 13 5061 ifi 4 3 5080 fide 4 4 4832 traylor 4 7 5170 goldsberry 4 10 1920 'any 4 4 1915 winti 4 5 1857 twentynine 4 10 4552 p'fie 4 5 5362 farnum 4 6 5384 papetoai 4 8 14 tri 4 3 1790 capps 4 5 5473 freemont 4 8 2252 calebs 4 6 5595 brn 4 3 5608 berthoud 4 8 5626 reis 4 4 4572 grenfell 4 8 1346 guadaloupe 4 10 1340 sions 4 5 6711 andthe 4 6 662 hansa 4 5 3805 acra 4 4 7913 hea 4 3 3792 gorman 4 6 7943 ''the 4 5 7954 tierra 4 6 693 amyot 4 5 7990 canv 4 4 8021 kibira 4 6 8052 ansgarius 4 9 8057 caro 4 4 3679 britian 4 7 6737 sbbath 4 6 8185 l'i 4 3 647 br'ght 4 6 3665 visser 4 6 8325 crowther 4 8 8359 kroners 4 7 2752 kelsea 4 6 8442 ble 4 3 8470 godgiven 4 8 8480 presque 4 7 8506 nickerson 4 9 7862 sharpsburg 4 10 7791 priate 4 6 797 pottstown 4 9 849 juras 4 5 1288 taftsville 4 10 6877 seffner 4 7 6885 gome 4 4 6902 'so 4 3 4096 hollandville 4 12 1107 taopi 4 5 2514 'in 4 3 7257 helvetians 4 10 7303 inthe 4 5 3999 metropolitans 4 13 7400 peckham 4 7 1043 clure 4 5 1024 cassopolie 4 10 4913 richville 4 9 7581 wacek 4 5 984 fleshmeats 4 10 2636 allister 4 8 7620 espirito 4 8 937 itinerating 4 11 7703 bliven 4 6 3880 medora 4 6 6686 nowlin 4 6 [670 rows x 3 columns]
In [19]:
title = 'HR'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for HR: spell_error count word_length 28466 tion 950 4 20855 sel 633 3 72492 cafe 595 4 15620 sitz 460 4 50304 ment 445 4 31479 pre 423 3 61348 proteid 417 7 45282 hydrozone 266 9 2316 tions 265 5 76552 glycozone 250 9 26613 kumyss 247 6 32473 agt 220 3 55482 chas 217 4 79511 marchand 215 8 37440 priessnitz 207 10 40862 sirup 180 5 12623 tremens 180 7 30726 hypopepsia 177 10 61891 'em 176 3 11648 tri 175 3 90127 ance 169 4 81227 ble 157 3 72423 keeley 157 6 31201 ous 155 3 67026 ments 155 5 15859 ful 154 3 56875 'the 154 4 62831 tem 152 3 6277 trall 147 5 86637 deimel 146 6 73573 cornaro 138 7 6184 ers 133 3 69701 ence 132 4 69993 ent 128 3 88946 microscopists 126 13 43989 ity 125 3 71050 clure 125 5 78955 ecole 120 5 62432 kedzie 120 6 16325 wuz 120 3 5731 onehalf 119 7 27297 ridpath 119 7 11176 hygeio 118 6 31228 ili 116 3 86271 hydriatic 116 9 30615 ple 114 3 61584 vick 112 4 79835 socalled 108 8 26309 fehr 108 4 58111 gruels 107 6 81217 ture 106 4 16890 infantum 106 8 7069 paso 106 4 85605 ure 105 3 86141 electropoise 104 12 83812 pim 104 3 53225 dren 97 4 81478 ical 97 4 27280 tle 96 3 91992 basle 96 5 68797 ber 96 3 19271 meltose 95 7 45251 derangements 94 12 4916 mal 94 3 86489 munn 92 4 50416 twentyfive 91 10 91345 centrale 91 8 76742 ealth 91 5 31962 pharmacal 90 9 41540 schoolcraft 89 11 79481 drexel 89 6 64041 dextrinized 87 11 56573 ceo 86 3 82386 soo 86 3 23840 strychnia 85 9 83553 caffein 84 7 36429 crandon 84 7 4888 morbus 84 6 26457 corpore 82 7 91308 bacco 82 5 41557 enemata 81 7 9922 institut 81 8 34059 parral 80 6 81467 eral 79 4 34434 alabastine 79 10 91533 bloodvessels 78 12 39792 pawlow 77 6 58759 ioo 76 3 18831 chautauquan 76 11 55601 mis 76 3 73873 accom 75 5 35276 twentyfour 75 10 54967 ood 74 3 12182 colman 74 6 11664 sanitaire 74 9 3136 farnum 73 6 67838 boylston 73 8 13676 ani 73 3 83099 murdock 72 7 41584 condit 71 6 ... ... ... ... 70435 ified 4 5 70472 wellboiled 4 10 70492 threeor 4 7 12689 appara 4 6 33935 terly 4 5 4682 emorest 4 7 71584 sendfreea 4 9 4722 breederswe 4 10 71472 cotosuet 4 8 71322 bacheler 4 8 34238 shafer 4 6 34281 sensical 4 8 4738 moand 4 5 4755 up' 4 3 34288 here' 4 5 71239 tipulary 4 8 4804 moqui 4 5 71213 eyesa 4 5 71122 hwth 4 4 34295 sacri 4 5 12779 glycorone 4 9 4826 axler 4 5 34445 villemin 4 8 34491 youare 4 6 70890 zemzem 4 6 70843 grizel 4 6 34600 ential 4 6 34616 tinues 4 6 34797 divorcecourts 4 13 34814 tiiis 4 5 70671 mieh 4 4 34947 evrard 4 6 35141 nute 4 4 35903 faris 4 5 36035 meateater 4 9 69392 vaipipg 4 7 12251 giessen 4 7 5375 manwoman 4 8 12227 seg 4 3 37045 egtensive 4 9 12226 elc 4 3 37198 britian 4 7 68119 trils 4 5 37231 apprecia 4 8 37279 waddington 4 10 68097 flagg 4 5 68033 arrearages 4 10 68032 shiverings 4 10 68016 kisi 4 4 37313 iixa 4 4 37362 eie 4 3 67970 workin 4 6 67953 brushings 4 9 12177 rassed 4 6 37456 oeen 4 4 67878 lachrymation 4 12 5497 advertbements 4 13 37531 therapeuptic 4 12 67812 necessaryand 4 12 37622 bastie 4 6 12146 aire 4 4 37656 exis 4 4 67685 eat' 4 4 12068 alexins 4 7 37826 inspec 4 6 67602 ampmpm 4 6 37003 distemperate 4 12 68567 drouths 4 7 12463 rawnsley 4 8 5366 'same 4 5 36136 formad 4 6 36138 oir 4 3 69363 brophy 4 6 36154 yellowfever 4 11 69325 shal 4 4 36164 ceeding 4 7 5214 laundried 4 9 69210 mps 4 3 36307 ljtaith 4 7 69183 ved 4 3 69174 snanitiatarriium 4 16 12392 icycle 4 6 12321 razzle 4 6 68979 lthough 4 7 5308 heatmaking 4 10 5315 sweetcakes 4 10 68920 schnirer 4 8 36673 reina 4 5 68880 crowell 4 7 68812 inbe 4 4 12287 maake 4 5 36849 crt 4 3 68705 amd 4 3 36871 divinny 4 7 36891 neison 4 6 68671 eted 4 4 36963 lallemand 4 9 36964 perihelionists 4 14 36965 itif 4 4 33550 swinyard 4 8 [6691 rows x 3 columns]
In [6]:
title = 'IR'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for IR: spell_error count word_length 2109 tion 359 4 23146 mahan 315 5 8358 ence 177 4 5308 presidentw 175 10 22751 walkerton 167 9 19537 tions 144 5 6118 unionville 143 10 20371 rocklane 140 8 18307 ference 139 7 3 chas 134 4 14221 ment 131 4 10384 frankton 125 8 1881 inwood 123 6 3615 adiana 121 6 5761 secretaryw 119 10 15796 seventhday 112 10 21673 ber 109 3 7323 medaryville 90 11 416 ple 88 3 17156 geporter 86 8 21982 horlacher 84 9 14207 suptc 82 5 2119 ers 81 3 4000 boze 79 4 22545 ren 79 3 7738 dilworth 77 8 6947 brookston 75 9 18172 indpls 75 6 12118 committeew 72 10 1050 sionary 72 7 14809 minnick 67 7 21790 ent 67 3 131 sunman 65 6 4164 ary 62 3 19087 pepple 61 6 20962 treasurerw 58 10 12859 cuaig 57 5 11833 secretariesa 56 12 18610 treasurera 56 10 132 nuding 56 6 12629 treasurert 55 10 3364 mis 53 3 14125 burkhart 52 8 9700 missionaryr 52 11 4098 ance 52 4 2708 ville 51 5 13909 ments 51 5 4904 beath 51 5 1401 ters 50 4 14087 adelia 50 6 16039 hodapp 49 6 14115 haskins 47 7 14114 pre 45 3 4547 ful 45 3 6901 busz 42 4 116 eral 41 4 5978 dianapolis 39 10 18445 higbee 39 6 14974 rium 39 4 11370 lugenbeal 39 9 18844 mittee 39 6 2401 wirt 36 4 16179 metzker 36 7 6588 possman 36 7 8389 bers 36 4 23220 altho 35 5 8679 indi 35 4 22151 athen 35 5 7184 britton 35 7 21422 hussey 34 6 19175 apolis 34 6 15883 mellinger 34 9 21458 ceived 34 6 10926 wanteda 33 7 6774 'the 33 4 12103 crary 33 5 8081 dren 33 4 9091 cleland 32 7 11763 mal 32 3 7058 ation 31 5 7829 gabriella 31 9 3280 kenney 31 6 14136 libertya 31 8 21880 sions 31 5 19097 larkin 31 6 4819 medicaldr 31 9 16868 korn 30 4 6834 cleotis 30 7 17604 terest 30 6 294 huntingburg 30 11 17233 carahoof 29 8 12197 tarium 29 6 3033 portant 29 7 16948 ture 29 4 6472 secretaryj 28 10 19311 geperter 28 8 79 ington 28 6 19053 ning 28 4 10887 peo 28 3 4225 thos 28 4 ... ... ... ... 16000 interthe 4 8 15907 accomodated 4 11 15847 cunig 4 5 15694 neese 4 5 15635 couragingly 4 11 15545 nected 4 6 9278 knowl 4 5 15540 lauffer 4 7 15533 het 4 3 15508 immedi 4 6 15431 whittaker 4 9 15348 elt 4 3 15321 imand 4 5 15248 wer 4 3 14866 tieing 4 6 14750 prepar 4 6 14654 sanitar 4 7 14558 jority 4 6 16384 haye 4 4 16438 occa 4 4 16622 lecting 4 7 16645 sehool 4 6 18137 employes 4 8 17971 lts 4 3 17967 exof 4 4 17945 newed 4 5 17923 ization 4 7 17911 uhe 4 3 17883 conwas 4 6 17820 guage 4 5 17711 strating 4 8 17661 secretarya 4 10 17613 fairlaud 4 8 17609 lms 4 3 17443 preceeded 4 9 17421 ntsh 4 4 17258 sanitari 4 8 17103 remem 4 5 17072 ethelyn 4 7 17021 stantial 4 8 16992 perty 4 5 16968 nancial 4 7 16937 misof 4 5 16767 wakarusa 4 8 16693 cerenola 4 8 14449 lizzfe 4 6 14378 cerely 4 6 14350 memthe 4 6 11961 sug 4 3 11831 clawson 4 7 11736 eeeeee 4 6 11699 deis 4 4 11408 'it 4 3 11179 rewith 4 6 11050 faiththe 4 8 11034 timonies 4 8 10983 indianapous 4 11 10852 laand 4 5 10784 beto 4 4 10686 gansport 4 8 10439 estly 4 5 10277 bewill 4 6 10219 jbuhalts 4 8 10208 cli 4 3 10156 sponded 4 7 10135 durgan 4 6 9837 dustrial 4 8 9769 komo 4 4 9762 iola 4 4 9476 templeton 4 9 9441 'if 4 3 9279 bufialts 4 8 11871 wolflake 4 8 12029 malony 4 6 14343 enty 4 4 12061 shambaugh 4 9 14272 exthat 4 6 14249 walburn 4 7 14190 sto 4 3 14121 'po 4 3 14019 adian 4 5 13765 rcher 4 5 13599 haps 4 4 13479 margeret 4 8 13116 marton 4 6 13099 forand 4 6 12999 liever 4 6 12994 ohmer 4 5 12993 warrick 4 7 12809 cott 4 4 12806 beand 4 5 12780 peoof 4 5 12628 presidenti 4 10 12486 culation 4 8 12464 prepara 4 7 12458 michaelville 4 12 12331 condi 4 5 12143 sisted 4 6 12141 ruary 4 5 23335 cers 4 4 [1053 rows x 3 columns]
In [7]:
title = 'LB'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for LB: spell_error count word_length 10799 mackey 296 6 14763 hsi 247 3 23192 halsted 165 7 7895 ile 142 3 13506 vitamines 110 9 7689 lundell 97 7 23332 kershaw 95 7 21299 auley 92 5 14910 pearsons 91 8 24764 harner 90 6 15591 stapp 84 5 3514 'the 84 4 483 pavlson 81 7 17017 chas 79 4 16922 soulwinning 76 11 2498 'to 72 3 23901 crittenton 71 10 22240 twentyfive 69 10 7922 chicagotrains 68 13 10192 courtland 55 9 11960 dannemora 55 9 3304 bilhorn 53 7 8226 burghart 52 8 861 pawlow 51 6 19634 thekla 49 6 17951 gazeteer 49 8 1116 papercovered 48 12 14525 ridpath 45 7 17780 whisler 44 7 23230 tion 43 4 21419 'of 43 3 19572 jno 42 3 23195 zada 42 4 21072 'and 41 4 12052 saloonkeeper 41 12 6181 minutesfifty 41 12 21951 jeffers 40 7 15662 'we 40 3 10797 laundryin 39 9 12256 cyclopmdic 39 10 1130 stillwater 39 10 22870 edholm 38 6 1473 colortype 38 9 4732 desplaines 38 10 5889 'phone 38 6 17360 kohlsaat 36 8 21261 eze 35 3 20293 psa 35 3 1314 pre 34 3 19859 salle 34 5 17907 agt 34 3 6237 kedler 34 6 10954 sevenjeweled 33 12 24169 ment 33 4 9666 vories 32 6 16941 holaday 32 7 4106 egal 31 4 21445 employe 31 7 15138 luyster 31 7 19204 mal 31 3 9024 cann 31 4 20228 stantly 30 7 13740 cyclopedic 30 10 17421 tkt 30 3 3382 sinsick 29 7 12504 'in 29 3 5758 kniskern 29 8 1513 lbinsbale 29 9 2407 oldfashioned 29 12 12134 thos 29 4 4958 leavitt 28 7 20704 waltham 28 7 10277 ranney 28 6 7495 tyrer 28 5 1668 printype 27 8 1029 cyclopaedic 27 11 5503 zoerb 26 5 21218 cyclopxdic 26 10 18339 gipsy 26 5 4542 anb 26 3 22593 anamosa 25 7 10926 hurd 25 4 4520 tiie 25 4 8112 themnot 25 7 24190 potosi 25 6 20938 burleson 24 8 16436 onehalf 24 7 16214 medo 24 4 12131 ufford 24 6 5712 ballington 24 10 14083 selfsupporting 24 14 2491 employes 23 8 20708 'neath 23 6 3881 mis 23 3 8730 rawlinson 23 9 906 ili 22 3 9282 ments 22 5 530 cassimeres 22 10 11650 appli 22 5 3818 cbicago 21 7 ... ... ... ... 20581 methat 4 6 20569 tio 4 3 20552 fausset 4 7 15071 iiii 4 4 20471 supervisionof 4 13 20435 hitt 4 4 4682 tlie 4 4 15075 gpta 4 4 11000 gowlie 4 6 4759 thou'lt 4 7 4790 follo 4 5 10991 batonga 4 7 4843 cornmunity 4 10 20378 foodless 4 8 4894 creegan 4 7 10955 lation 4 6 15145 uring 4 5 20301 daybuthave 4 10 4927 'whosoever 4 10 4965 carscallen 4 10 20269 editori 4 7 20611 tae 4 3 14918 shoop 4 5 11107 easurements 4 11 20997 ered 4 4 21131 llo 4 3 21119 usward 4 6 4152 nating 4 6 11154 deathdealing 4 12 21103 itself' 4 7 4158 brodder 4 7 4232 him' 4 4 4243 ral 4 3 4290 'on 4 3 4306 rro 4 3 14769 simson 4 6 4502 ister 4 5 4331 georgeson 4 9 4348 raws 4 4 9397 naturedly 4 9 14801 eskridge 4 8 20853 subwe 4 5 14901 bosphorus 4 9 20816 brompton 4 8 20802 teresting 4 9 4447 poisonful 4 9 20768 pharoah 4 7 4994 nickles 4 7 15168 wand'ring 4 9 5050 muscatine 4 9 19426 helzer 4 6 19653 sdale 4 5 10607 lusx 4 4 19633 foss 4 4 5715 bulow 4 5 5725 samkoff 4 7 5740 worldthe 4 8 5845 lifea 4 5 10554 haing 4 5 19502 christian' 4 10 19454 ilissionary 4 11 19219 enger 4 5 19724 peoplepeople 4 12 19206 'since 4 6 6006 mee 4 3 15510 rurses 4 6 10529 sandow 4 6 15564 twills 4 6 10490 'when 4 5 15601 mahan 4 5 6143 luvster 4 7 6211 talcott 4 7 6235 rhe 4 3 19703 ught 4 4 5680 'him 4 4 10952 oddsize 4 7 19934 appre 4 5 10818 cowee 4 5 15217 rawlins 4 7 5103 lauck 4 5 5170 leseme 4 6 5219 sor 4 3 20055 warrenville 4 11 15224 smerdis 4 7 20002 hostetter 4 9 10714 olivers 4 7 5241 keinhoff 4 8 19920 ough 4 4 19743 harrigan 4 8 5462 vix 4 3 5481 burford 4 7 19854 tli 4 3 10622 ese 4 3 15295 soul' 4 5 5568 ement 4 5 10618 hebard 4 6 10610 besetments 4 10 19763 companyso 4 9 5666 valdosta 4 8 12789 conversationala 4 15 [1352 rows x 3 columns]
In [8]:
title = 'LH'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for LH: spell_error count word_length 3136 cornforth 267 9 15571 tri 120 3 25076 tion 119 4 7320 nauheim 91 7 4410 antituberculosis 87 16 1492 pre 83 3 8341 'ad 71 3 18562 vitamine 64 8 17815 onehalf 63 7 24188 socalled 62 8 8615 ment 61 4 14628 quinin 61 6 9133 lllll 59 5 18254 ioo 54 3 17120 roseburg 53 8 19743 kee 52 3 21068 friedmann 52 9 25310 osler 51 5 5812 karmatar 50 8 22332 sanatoria 50 9 16894 bulkley 45 7 15295 drugless 45 8 7572 antityphoid 45 11 18465 chas 45 4 14610 nebulizers 44 10 697 imprenta 42 8 13688 peruna 41 6 7691 westfield 41 9 7241 sitz 40 4 1263 madronas 40 8 14286 unvaccinated 40 12 19067 cromie 40 6 24603 bannerman 40 9 23321 'the 40 4 24044 picric 39 6 26551 gulick 39 6 17163 verdad 39 6 26769 upto 38 4 14193 frictionary 37 11 12218 iiiii 37 5 4451 achard 37 6 15392 welltrained 37 11 22530 nozaleda 37 8 7479 bellair 37 7 22633 bournville 36 10 11781 kinau 36 5 1010 ili 35 3 20645 hindhede 35 8 13161 mal 34 3 21293 lorand 33 6 15525 herter 33 6 2016 goldberger 32 10 13784 ful 32 3 25355 peroxid 32 7 4251 mis 32 3 1903 pellagrins 32 10 22429 purin 32 5 12659 openair 31 7 17721 keech 31 5 5275 welch's 31 7 16821 mahon 30 5 2990 ellamont 30 8 5844 wellknown 29 9 12134 collum 29 6 16274 iiii 29 4 4614 musselman 29 9 4492 cornaro 29 7 9263 ptomain 29 7 2310 ini 28 3 16644 nal 28 3 1857 llllll 27 6 20777 electriclight 27 13 15724 ridpath 27 7 6800 voit 27 4 698 twentyfour 27 10 11617 ith 27 3 22831 'and 27 4 10559 thermo 26 6 1055 ent 26 3 22525 canners 26 7 21639 omprising 26 9 23200 'of 26 3 23846 twentythird 25 11 20865 nonmeat 25 7 18859 guilbert 25 8 13211 doran 25 5 16953 salvarsan 25 9 24054 twentyfive 25 10 967 pawlow 24 6 20870 sha 24 3 12354 whalebones 24 10 16518 deathrate 24 9 6683 rosenau 24 7 16183 rane 24 4 14826 misbranded 24 10 1327 moneyorder 24 10 19321 woodhead 23 8 15124 iet 23 3 4145 healt 23 5 19292 ealth 23 5 ... ... ... ... 19268 lifr 4 4 19282 recanned 4 8 19318 nyassaland 4 10 19399 timehonored 4 11 19535 paso 4 4 19546 carbo 4 5 16064 gipsy 4 5 16022 stines 4 6 10586 hydrtherapy 4 11 12259 harken 4 6 11570 iiiiiiiiiiiiiiii 4 16 11751 koren 4 5 11755 pharmacopceia 4 13 11802 ress 4 4 11812 thera 4 5 11854 icebag 4 6 11950 coldmitten 4 10 12043 tremely 4 7 12207 stracts 4 7 12396 anc 4 3 15995 mak 4 3 12399 ihe 4 3 12573 heatand 4 7 12597 inhalatorium 4 12 12710 antiputrefactive 4 16 12751 cokord 4 6 12904 woodalcohol 4 11 12906 piki 4 4 12916 almostautomatically 4 19 12970 cffl 4 4 11514 igi 4 3 11506 hono 4 4 11431 northend 4 8 11425 ivr 4 3 10613 opment 4 6 10727 kathrina 4 8 10734 bodyand 4 7 10747 litform 4 7 10771 wun 4 3 10810 ctsayear 4 8 10935 rhin 4 4 10961 ftf 4 3 10979 illissionary 4 12 11057 fernet 4 6 11101 appa 4 4 11103 seidlitz 4 8 11110 ductory 4 7 11189 soyer 4 5 11196 gerontic 4 8 11278 darnall 4 7 11288 ninetyseven 4 11 11293 oot 4 3 11338 wageearners 4 11 12979 payson 4 6 12984 helsingfors 4 11 12998 ille 4 4 14535 lackawanna 4 10 14620 gooa 4 4 14711 nificant 4 8 14717 fli 4 3 14727 safetypins 4 10 14796 ife 4 3 14855 mor 4 3 14904 veiller 4 7 15249 selfsupporting 4 14 15304 lene 4 4 15429 ofdoor 4 6 15441 homekeeper 4 10 15465 mei 4 3 15502 ake 4 3 15610 bons 4 4 15759 lnd 4 3 15782 toif 4 4 15846 samado 4 6 15877 combatting 4 10 15994 erly 4 4 14560 fre 4 3 14487 mment 4 5 13108 conserver 4 9 14408 tial 4 4 13175 cepted 4 6 13189 gorst 4 5 13207 clubb 4 5 13228 flueless 4 8 13242 iealth 4 6 13250 salud 4 5 13274 rettger 4 7 13276 schlickeysen 4 12 13282 ook 4 3 13377 sulting 4 7 13764 bowsfield 4 9 13877 portunity 4 9 13976 ficient 4 7 13982 huchard 4 7 14050 trom 4 4 14112 stockard 4 8 14323 electriclighted 4 15 14377 tingfang 4 8 14401 cgdking 4 7 27242 warbasse 4 8 [1606 rows x 3 columns]
In [9]:
title = 'LibM'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for LibM: spell_error count word_length 412 gallivan 61 8 3949 religio 48 7 1554 miraglia 45 8 6330 tion 43 4 8822 cxsar 40 5 7506 neander 38 7 5181 charta 37 6 2382 ment 32 4 6487 chas 30 4 257 seventhday 29 10 1233 mutchler 28 8 1977 pre 25 3 581 heyburn 23 7 2949 connell 21 7 3971 'the 20 4 7138 haverhill 19 9 766 brevities 19 9 3577 eze 18 3 138 siegel 17 6 7015 interchurch 17 11 3021 cockran 16 7 3185 parte 15 5 4197 'of 15 3 5169 socalled 15 8 2819 sunclay 14 7 169 robb 14 4 9122 gaw 14 3 5880 connorton 14 9 6172 bastile 13 7 5787 bonzano 13 7 7458 fairmount 13 9 5397 claxton 13 7 4754 roseburg 13 8 7545 krieger 13 7 362 mmm 13 3 3340 churchand 13 9 6331 andstate 12 8 8323 hamurabi 12 8 6203 ioo 12 3 3145 smoot 12 5 8617 bannerman 12 9 5308 medo 12 4 8720 ligious 12 7 3723 tions 11 5 2853 gaynor 11 6 5424 rooker 11 6 8016 sundaylaw 11 9 1670 vagh 11 4 695 ernment 11 7 6784 kerens 10 6 4983 libertyloving 10 13 5802 hanly 10 5 3149 lllll 10 5 6424 brien 10 5 2227 prin 10 4 845 gantenbein 10 10 7444 borah 10 5 421 elsnath 10 7 1221 ber 10 3 7523 clinedinst 10 10 3063 mayhew 10 6 7659 twentyfive 10 10 8726 ashby 10 5 8134 cathedra 10 8 1677 cxxxiv 9 6 9031 religi 9 6 8935 ringgold 9 8 377 farreaching 9 11 5688 filiated 9 8 4039 ellamont 9 8 2852 ridpath 9 7 2883 upsall 9 6 6417 frisons 9 7 884 twentyfour 9 10 5579 libert 9 6 2468 ile 9 3 2536 honorius 9 8 3386 tithingman 9 10 5346 diaz 8 4 2851 nozaleda 8 8 5507 ligion 8 6 2677 faneuil 8 7 2958 dagonya 8 7 3749 cmsar 8 5 4812 verdad 8 6 3461 minton 8 6 3876 bartholdt 8 9 3635 woolman 8 7 8300 lil 8 3 554 bourke 8 6 3547 sundayclosing 8 13 8022 ttf 8 3 7984 temporalities 8 13 7779 ili 8 3 4211 stitution 8 9 4251 erty 8 4 4295 laurin 8 6 6643 tiie 8 4 3100 burleson 7 8 4462 ity 7 3 ... ... ... ... 8165 alister 5 7 5055 thro 5 4 621 millan 5 6 591 pia 5 3 484 ministerium 4 11 1365 ite 4 3 9180 firstand 4 8 1344 saboth 4 6 8625 stanchly 4 8 199 iie 4 3 204 tkg 4 3 8752 pers 4 4 7186 erance 4 6 9161 pereira 4 7 7157 cutchen 4 7 7348 millington 4 10 7321 querque 4 7 7972 mittee 4 6 511 troduced 4 8 8433 cwsar 4 5 7973 carbo 4 5 751 aked 4 4 723 tlf 4 3 7722 canalejas 4 9 1014 wetmore 4 7 7568 kihrrtu 4 7 541 chainless 4 9 1021 shi 4 3 7357 lello 4 5 8463 brownson 4 8 1034 allister 4 8 1102 francesco 4 9 539 labor' 4 6 1224 ketcham 4 7 8565 hosius 4 6 1503 ayear 4 5 3750 prima 4 5 6334 grosscup 4 8 1518 'for 4 4 4449 crozer 4 6 5052 nct 4 3 3075 ofi 4 3 4902 tkr 4 3 3088 duced 4 5 4771 nem 4 3 3130 duval 4 5 4753 ciple 4 5 4740 dred 4 4 4695 attleboro 4 9 4663 legisla 4 7 3263 servance 4 8 4655 sulzer 4 6 4590 tle 4 3 4342 iti 4 3 1567 botsford 4 8 4275 creedal 4 7 4243 pulsory 4 7 4222 scriptions 4 10 3432 bluelaws 4 8 3498 christison 4 10 4145 selfevident 4 11 4081 atheneum 4 8 4066 henshaw 4 7 3632 mee 4 3 4036 casar 4 5 3968 gasless 4 7 3961 aweteranian 4 11 3660 iated 4 5 5066 sannella 4 8 5103 selfsacrifice 4 13 5121 ferred 4 6 5146 exer 4 4 6893 tlie 4 4 6852 lation 4 6 6776 impor 4 5 6747 liberi 4 6 6536 imm 4 3 6496 usconstitution 4 14 1674 kai 4 3 6421 benziger 4 8 1676 twentyfirst 4 11 6372 mehmed 4 6 1687 iow 4 3 1791 torchlights 4 11 1887 reichstag 4 9 6094 tive 4 4 6017 tant 4 4 1999 temere 4 6 2028 fide 4 4 2317 sweetser 4 8 2458 murietta 4 8 2519 llllll 4 6 5453 eral 4 4 2630 lished 4 6 2783 ereign 4 6 5314 porta 4 5 2841 dowling 4 7 2913 steffens 4 8 3069 libertas 4 8 120 sov 4 3 [311 rows x 3 columns]
In [10]:
title = 'LUH'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for LUH: spell_error count word_length 7270 vagh 663 4 19685 ords 471 4 11408 drury 455 5 18121 chas 443 4 10254 suda 353 4 19610 shelbyville 284 11 26642 herrin 275 6 6736 conaughey 271 9 22351 kimberlin 266 9 10191 plake 241 5 18855 wanteda 235 7 22677 kingman 228 7 12336 tri 222 3 10285 mitzelfelt 217 10 5701 rothbury 199 8 14019 devereaux 195 9 23016 coldwater 195 9 4784 urbandale 194 9 20007 tillie 193 6 21806 englewood 182 9 9643 dimondale 176 9 1097 seventhday 175 10 17131 ruh 170 3 16589 mahan 166 5 25912 pengelly 166 8 1093 greenbush 162 9 12595 mattoon 161 7 6175 kittleson 152 9 15862 clellan 151 7 18366 kinderhook 151 10 15963 tatton 150 6 12688 gowen 149 5 6649 palmiter 148 8 5509 herrington 145 10 23118 clintonville 145 12 17297 rapson 144 6 8822 bluford 143 7 22359 unionville 141 10 25533 clenathan 141 9 22579 colton 139 6 5893 horr 138 4 23068 alaiedon 137 8 5209 elmwood 137 7 22867 'the 137 4 3834 emerick 137 7 4752 scand 133 5 9284 trufant 131 7 17153 palo 131 4 23333 underhill 131 9 14917 bloomville 127 10 8513 sabbathschool 126 13 18774 inwood 126 6 4989 watrousville 122 12 10260 sunman 122 6 25352 crandon 119 7 21893 soo 117 3 17430 scholz 113 6 4447 addis 110 5 6805 bello 108 5 2592 hintz 108 5 26501 halderson 108 9 7108 cleora 104 6 13058 bernitt 104 7 20301 lundquist 103 9 4083 mis 103 3 10595 rideout 102 7 22354 eachern 102 7 12931 thos 101 4 766 brethern 99 8 8640 coppock 97 7 11870 mina 96 4 18581 garber 92 6 11365 possman 90 7 17193 bissett 89 7 20526 ludington 89 9 20506 guire 88 5 19949 pontoosuc 87 9 20140 fortville 87 9 15519 zeba 84 4 375 churchschool 83 12 13171 leetsville 83 10 5753 evitts 80 6 22734 'of 80 3 17184 truf 80 4 7891 erald 78 5 20413 rocklane 77 8 3719 junct 77 5 14302 barryton 75 8 15158 remsen 74 6 26513 wegtworth 73 9 22022 elkton 73 6 26405 lausten 72 7 9717 twombly 70 7 20403 maplegrove 70 10 24034 orde 69 4 5534 hardt 69 5 9367 banty 68 5 23662 twentyfive 67 10 127 dighton 66 7 900 crail 66 5 ... ... ... ... 22769 mancelona 4 9 22772 dar 4 3 22807 belville 4 8 2338 erickle 4 7 9214 tbe 4 3 2605 jes 4 3 2870 churchmembership 4 16 2636 madson 4 6 2850 fourty 4 6 13325 nathu 4 5 9074 rohr 4 4 13304 cuaig 4 5 22325 ofdoors 4 7 9087 prickitt 4 8 9109 convis 4 6 13208 ortonville 4 10 2744 gladto 4 6 2723 secretarytreasurer 4 18 22390 delp 4 4 22400 publicatior 4 11 2680 whittmore 4 9 9139 cakainion 4 9 2648 het 4 3 8657 literture 4 9 21412 delc 4 4 21401 tithepaying 4 11 14804 chism 4 5 20295 mov 4 3 20297 mitzelfeldt 4 11 4273 nfr 4 3 14718 bently 4 6 8036 nobleville 4 10 8063 biederwolf 4 10 8073 nieetings 4 9 14666 hasbeen 4 7 8075 'od 4 3 20427 caipiras 4 8 4135 urbina 4 6 14606 goblesville 4 11 14603 rone 4 4 3977 waddell 4 7 8092 schoolcraft 4 11 7990 tennesee 4 8 20222 hedwig 4 6 20530 heartsearching 4 14 14879 loami 4 5 4508 konechny 4 8 4502 walkerto 4 8 19891 kirkham 4 7 4475 parshall 4 8 4458 greid 4 5 19942 tunnell 4 7 14930 onal 4 4 7811 everet 4 6 20008 interlineations 4 15 20013 augtst 4 6 20055 elkart 4 6 4353 thetime 4 7 4339 liij 4 4 4336 ering 4 5 20198 ppe 4 3 3911 srawberry 4 9 20584 helzer 4 6 8590 toour 4 5 3475 vella 4 5 21084 schuh 4 5 8405 schoenfeld 4 10 14176 arlie 4 5 21112 posession 4 9 21114 uptegrove 4 9 21116 herkimer 4 8 3413 nem 4 3 21175 otho 4 4 3381 valdamar 4 8 14090 'other 4 6 21331 ddress 4 6 21334 pso 4 3 3360 haughev 4 7 8582 rahr 4 4 21384 berd 4 4 14184 ardenne 4 7 14198 'church 4 7 14527 lorr 4 4 20979 oggs 4 4 14443 colson 4 6 3853 repitched 4 9 8210 finnell 4 7 3733 irresistable 4 12 3687 fahrion 4 7 20792 amberg 4 6 3641 apolis 4 6 14391 wideawake 4 9 3619 year' 4 5 20908 granoila 4 8 14377 hom 4 3 8258 oeakainion 4 10 3545 baraga 4 6 20973 arrangments 4 11 8314 sparren 4 7 5076 life' 4 5 [2232 rows x 3 columns]
In [11]:
title = 'NMN'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for NMN: spell_error count word_length 2957 aro 89 3 9302 leetsville 28 10 5842 willaman 26 8 176 dighton 22 7 3643 evart 21 5 2724 soo 20 3 6990 clellan 19 7 4149 myrta 18 5 4662 altho 18 5 7265 manistee 15 8 8423 beeler 15 6 5608 havo 14 4 523 sho 12 3 5262 tae 12 3 1493 armilda 12 7 1123 thoy 12 4 7469 tne 12 3 1710 vincinity 11 9 735 lich 11 4 8967 thos 11 4 726 ludington 11 9 6487 aee 11 3 2395 ich 9 3 4644 ence 9 4 8887 blesser 9 7 8851 lcrd 9 4 7784 ichigan 9 7 1109 confe 9 5 6809 wcrk 9 4 7731 sabath 8 6 1871 thoir 8 5 2744 sabbathschool 8 13 2064 pre 8 3 8343 irs 8 3 8731 ork 8 3 6430 nee 8 3 8466 ent 8 3 4616 ith 7 3 7838 anc 7 3 2461 recomend 7 8 2197 ehe 7 3 8606 'he 7 3 5589 eople 7 5 6022 rth 7 3 4167 ood 6 3 3932 fcr 6 3 3827 pooplo 6 6 5757 ths 6 3 5865 lichigan 6 8 5989 stedman 6 7 6566 manistique 6 10 3589 bracebridge 6 11 9607 djork 6 5 8696 baurain 6 7 8804 scottvillo 6 10 9311 sprague 6 7 5365 thr 5 3 922 sablath 5 7 8898 yoar 5 4 1688 sdhool 5 6 8933 nany 5 4 9285 hee 5 3 7580 laketon 5 7 1351 ilichigan 5 9 5789 sabbatheschool 5 14 1024 lan 5 3 5887 oportunity 5 10 9316 ime 5 3 1835 ars 5 3 6232 ele 5 3 6309 onference 5 9 6319 helmer 5 6 732 shoulu 5 6 669 millan 5 6 6438 nal 5 3 6486 ers 5 3 543 brothor 5 7 362 tht 5 3 6793 nester 5 6 6848 vory 5 4 5267 aed 5 3 6942 manton 5 6 5172 liesick 5 7 2276 chas 5 4 3191 ther 5 4 3119 tnat 5 4 8720 eichigan 5 8 2606 ake 5 3 8009 assionary 5 9 7986 ust 5 3 4324 woula 5 5 4346 ler 5 3 4405 eas 5 3 2603 helvig 5 6 5143 ment 5 4 4803 triplett 5 8 4840 schcol 5 6 4890 linos 5 5 2068 dingman 5 7 2038 nen 5 3 7477 lilah 4 5 7166 ick 4 3 8689 socioty 4 7 9508 feom 4 4 8560 hav 4 3 9345 eeople 4 6 7445 sehool 4 6 8289 haee 4 4 8771 theie 4 5 8250 t'e 4 3 9170 a'e 4 3 7910 wil 4 3 7842 esick 4 5 8796 ycu 4 3 8621 otc 4 3 86 shee 4 4 6862 sistor 4 6 3255 vith 4 4 2891 toskey 4 6 2664 somo 4 4 2622 tio 4 3 2582 tay 4 3 2553 ile 4 3 2543 'or 4 3 2047 whon 4 4 1762 lnrd 4 4 1527 fetoskey 4 8 1497 liko 4 4 1451 shoula 4 6 1420 ple 4 3 1367 ren 4 3 1313 potoskoy 4 8 828 aith 4 4 355 ang 4 3 264 seventhday 4 10 2938 alth 4 4 3334 bain 4 4 6697 achigan 4 7 3402 preyer 4 6 6627 tir 4 3 6412 ance 4 4 5775 kenney 4 6 5732 euickly 4 7 5479 ond 4 3 5392 ussionary 4 9 5383 yoe 4 3 5269 eee 4 3 4116 'the 4 4 4093 goffar 4 6 4055 mber 4 4 4001 onavay 4 6 3862 tions 4 5 3807 timo 4 4 3785 oraway 4 6 3756 ame 4 3 3474 thet 4 4 5129 peoele 4 6
In [12]:
title = 'PHJ'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for PHJ: spell_error count word_length 697 sel 255 3 19978 ournal 129 6 278 societyl 80 8 16362 munn 73 4 4346 allerton 58 8 15963 misses' 56 7 17450 tion 54 4 3863 urnal 51 5 17316 teviperance 50 11 2849 'em 47 3 16736 cloe 47 4 11718 fahr 46 4 10923 sitz 45 4 2198 pre 45 3 14750 'the 39 4 20103 functual 38 8 18851 societya 37 8 6270 onehalf 36 7 8280 societyj 35 8 1905 jourxal 34 7 12956 ment 34 4 13211 cigaret 34 7 7143 vilas 34 5 12156 weiherweg 33 9 7734 monthlydevoted 32 14 2492 firstclass 30 10 15761 societys 30 8 10331 dyo 29 3 16018 thermo 29 6 8312 actina 29 6 10109 preventivesimple 28 16 6886 ance 27 4 19427 rowell 27 6 188 robb 26 4 18781 jenness 26 7 238 ful 26 3 7267 chas 26 4 19965 thos 25 4 19151 societym 25 8 13022 fehr 24 4 18703 societyc 24 8 6167 recipespost 24 11 1149 dio 24 3 9535 powes 24 5 6870 ralston 23 7 5665 cigarets 23 8 7948 japana 23 6 2510 stinson 22 7 246 nelia 22 5 9473 abbie 22 5 11872 rodolph 22 7 20550 washingall 21 10 13242 soo 21 3 8431 bahler 21 6 4511 akersgaden 21 10 6945 ioo 21 3 16664 wyman 21 5 14456 tions 20 5 8468 fasteningwith 20 13 10230 sah 20 3 5982 adjustably 20 10 10508 limbstroubles 20 13 10824 rocka 20 5 2062 drumm 19 5 17540 easton 19 6 5734 jou 18 3 15970 vill 18 4 10286 hechtman 18 8 856 lld 18 3 14263 carolinan 18 9 271 vith 18 4 4102 gauzes 18 6 12091 clure 17 5 13660 abouts 17 6 2898 sansome 17 7 19258 ventillation 17 12 18032 ish 17 3 9839 callyour 17 8 840 hutchings 17 9 13956 aimes 17 5 15755 bloodvessels 17 12 1379 depa 17 4 10670 nuttygrains 17 11 1099 dore 17 4 4846 dodds 16 5 3544 osed 16 4 3087 diseasea 16 8 16434 cambie 16 6 17175 illy 16 4 18367 ole 16 3 12535 pennellsuydam 16 13 2797 rnal 16 4 6012 rorer 16 5 8009 halfmorocco 16 11 20650 demorest 16 8 9656 rey 16 3 6311 englandn 16 8 19383 acific 16 6 13936 nux 16 3 8757 agt 16 3 ... ... ... ... 11398 muchas 4 6 12290 spongings 4 9 11491 diretory 4 8 11495 dere 4 4 11642 correa 4 6 11731 ertal 4 5 11850 cise 4 4 11861 ite 4 3 12671 thinkin 4 7 10774 oue 4 3 10741 tht 4 3 13189 tink 4 4 10122 sleepingrooms 4 13 13308 recamier 4 8 13307 sicians 4 7 13281 goodbut 4 7 13234 keeley 4 6 10298 pres't 4 6 10335 wante 4 5 10685 doin 4 4 10380 logue 4 5 10526 masse 4 5 10578 murdock 4 7 10620 broster 4 7 10661 cata 4 4 12801 ijouseleld 4 10 8618 physiciani 4 10 8606 oliveoil 4 8 8521 ari 4 3 14463 creelc 4 6 5889 quired 4 6 16016 repre 4 5 15972 alabamad 4 8 5979 englands 4 8 6013 tts 4 3 6172 medi 4 4 6201 turbinated 4 10 6230 eunson 4 6 6310 ket 4 3 15816 twentytwo 4 9 15801 keeler 4 6 15773 labarriere 4 10 6460 rth 4 3 6493 niemeyer 4 8 6778 perience 4 8 16069 trir 4 4 5757 talofa 4 6 5730 tarlets 4 7 5236 m'clure 4 7 5081 irv 4 3 5084 kirkham 4 7 5088 shust 4 5 5221 cious 4 5 16429 xit 4 3 16368 masseed 4 7 5341 kneipp 4 6 5677 breethe 4 7 5423 indi 4 4 16252 'an 4 3 5553 stockines 4 9 5617 zoth 4 4 5638 childrenwill 4 12 11981 fralthfully 4 11 6910 gwine 4 5 15626 bress 4 5 15419 vrooman 4 7 14611 toa 4 3 14839 dess 4 4 8202 ial 4 3 14720 cta 4 3 8270 tobe 4 4 14626 theonlysewingmachine 4 20 8319 milfred 4 7 8343 eatty 4 5 8180 doan 4 4 8384 'sw 4 3 8464 neurine 4 7 8484 ost 4 3 14536 fcr 4 3 14504 pintsch 4 7 14468 sentinelone 4 11 14845 esculapius 4 10 8117 quartettes 4 10 15399 'make 4 5 7915 havergal 4 8 15388 spect 4 5 15375 tti 4 3 7552 gauses 4 6 7677 dillingham 4 10 15335 altho 4 5 15253 groshen 4 7 15171 konut 4 5 8072 cial 4 4 15065 'if 4 3 15014 mful 4 4 14967 sanitarims 4 10 8020 tne 4 3 14944 wery 4 4 14936 illustratedjust 4 15 16 foo 4 3 [852 rows x 3 columns]
In [6]:
title = 'PTAR'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for PTAR: spell_error count word_length 71 ver 78 3 2050 'the 49 4 3524 ment 46 4 2269 holies 39 6 3671 tion 34 4 5131 'of 23 3 2944 storrs 23 6 5342 eze 17 3 2894 ments 17 5 5260 'to 13 3 933 ful 12 3 2946 ninevah 12 7 2558 thi 12 3 5761 tuary 12 5 419 nant 11 4 2572 pre 11 3 5570 tions 11 5 557 ture 10 4 2341 ble 10 3 2983 gon 9 3 1623 hagion 9 6 563 ofthe 9 5 5716 'was 9 4 4063 'that 9 5 105 ple 9 3 2352 mal 9 3 5126 vers 8 4 4718 'and 8 4 4141 dence 8 5 5472 waymark 7 7 1580 'is 7 3 378 rusalem 7 7 5404 topsham 7 7 303 jno 6 3 2198 ernacle 6 7 652 ile 6 3 270 lxxviii 6 7 4830 ond 6 3 2398 lviii 6 5 815 ceive 6 5 1385 macknight 6 9 3433 'his 6 4 3002 quities 6 7 464 ved 6 3 3661 inthe 6 5 1930 tience 6 6 5435 sus 6 3 4039 jeru 5 4 3680 tbe 5 3 4114 wil 5 3 4862 ery 5 3 3444 lieve 5 5 3287 cond 5 4 3746 numberer 5 8 3373 ance 5 4 3523 binius 5 6 3980 ish 5 3 3790 fassett 5 7 3556 provi 5 5 3440 withthe 5 7 5640 pickands 5 8 476 lished 5 6 446 xlv 5 3 937 'their 5 6 5528 chronologers 5 12 5186 eis 5 3 1877 swer 5 4 4905 hovah 4 5 4581 medo 4 4 5713 lxv 4 3 5648 tes 4 3 4558 daythe 4 6 5498 'in 4 3 5485 peo 4 3 5466 pired 4 5 4591 mation 4 6 5398 brn 4 3 5378 sation 4 6 4725 'from 4 5 5373 enq 4 3 4763 exthe 4 5 4776 lieved 4 6 252 'were 4 5 4779 fect 4 4 4288 jerico 4 6 5235 vation 4 6 5251 dren 4 4 537 tures 4 5 4197 pinney 4 6 1302 mit 4 3 2072 ged 4 3 1998 tant 4 4 1975 theni 4 5 1807 vir 4 3 1644 circleville 4 11 1430 cii 4 3 1233 ral 4 3 2374 ther 4 4 1149 newmoon 4 7 1095 millenium 4 9 744 sary 4 4 662 itt 4 3 615 nology 4 6 593 mandment 4 8 2161 thefulfillment 4 14 2441 ent 4 3 4026 worlda 4 6 3369 'or 4 3 3589 'by 4 3 332 millerism 4 9 3518 'but 4 4 3497 cxxxii 4 6 543 refered 4 7 3418 hea 4 3 3293 'be 4 3 2536 'you 4 4 103 tified 4 6 2994 shimper 4 7 379 rael 4 4 2831 thatthe 4 7 2640 yond 4 4 442 truththe 4 8 3214 sabbathday 4 10
In [13]:
title = 'PUR'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 0, 2, 'count')
print(results)
Summary for PUR: spell_error count word_length 33982 tion 627 4 180 elhany 490 6 46410 seventhday 448 10 53016 ords 407 4 11275 ence 380 4 6552 ment 308 4 48811 chas 304 4 39826 sabbathschool 297 13 31687 pherson 287 7 45912 ference 281 7 3862 'the 273 4 27230 verah 260 5 39528 secretarym 236 10 40940 ers 231 3 13349 ber 222 3 9927 pepperwood 222 10 48419 ple 218 3 39220 sda 209 3 24261 twentyfifth 167 11 11802 sionary 163 7 28419 mis 161 3 48884 'of 155 3 6448 secretaryj 154 10 23279 pre 152 3 17531 tions 152 5 32643 agentf 150 6 22085 treasurerb 149 10 34739 committeee 147 10 52274 kinleyville 146 11 35218 'to 133 3 28351 humbert 128 7 51715 presidente 126 10 52 ary 126 3 22821 phcenix 125 7 15008 eral 124 4 7235 ent 122 3 5063 pac 121 3 22015 'and 120 4 37332 pasqual 119 7 35741 ful 116 3 33879 kibbin 115 6 45053 'union 115 6 11697 cific 108 5 30462 californianevada 105 16 43888 hebard 103 6 34920 ance 103 4 26007 edendale 101 8 24694 fornia 100 6 32992 rulison 97 7 49155 ern 94 3 22475 bers 92 4 38531 edu 89 3 22126 guire 89 5 41044 ments 86 5 46758 sabbathkeepers 85 14 30029 belvail 83 7 48966 twentyfive 80 10 1549 dren 80 4 40644 ble 79 3 35192 peo 78 3 28546 ture 74 4 51930 committeej 71 10 2443 paign 71 5 6527 ters 70 4 48943 tressa 70 6 30607 mayers 70 6 44518 ceived 69 6 17289 helligso 69 8 25107 nia 68 3 32574 fice 68 4 33866 lege 68 4 22682 secretaryw 66 10 29813 pencilgrams 66 11 27957 presidentj 65 10 2702 'in 65 3 38441 sions 65 5 30328 terest 64 6 41957 ning 64 4 4972 kenzie 61 6 6053 spriggs 60 7 43637 churchschool 60 12 43073 desmarets 59 9 53525 snideman 58 8 42711 nis 58 3 37847 ery 57 3 7652 tional 57 6 21645 findley 57 7 1228 sabbathschools 56 14 39009 wanteda 56 7 5502 inthe 55 5 26236 onehalf 55 7 4947 tarium 54 6 20712 ordrs 54 5 43747 ventist 53 7 22750 nellis 53 6 29221 althaus 53 7 38934 ren 52 3 53519 ottie 52 5 44458 ioo 52 3 12950 tive 51 4 ... ... ... ... 19490 arwill 1 6 19491 ocality 1 7 19492 aeefrinvaued 1 12 19413 resociation 1 11 19412 filllah 1 7 19411 tearstained 1 11 19341 illhers 1 7 19332 ketc'aum 1 8 19333 convenone 1 9 19334 everythingwith 1 14 19335 iereby 1 6 19336 twentyexpenditure 1 17 19337 andkoss 1 7 19338 'tpposing 1 9 19339 calimissions 1 12 19340 seventhnight 1 12 19342 liabit 1 6 19328 patriif 1 7 19344 trueas 1 6 19348 framily 1 7 19349 iffeathing 1 10 19350 vey 1 3 19351 broththen 1 9 19352 whichhave 1 9 19353 knowlacquainted 1 15 19354 encouragconsideration 1 21 19355 eirpense 1 8 19330 ovotilt 1 7 19327 agpapers 1 8 19357 comcountry 1 10 19313 eservices 1 9 19301 stiperintendent 1 15 19302 likelyto 1 8 19303 septemsending 1 13 19304 unaca 1 5 19305 thalt 1 5 19307 bringhere 1 9 19308 mewith 1 6 19309 primiwill 1 9 19310 libetty 1 7 19315 campattend 1 10 19325 hopeduty 1 8 19316 faceto 1 6 19317 useof 1 5 19318 saniof 1 6 19319 dothese 1 7 19320 sanitaretable 1 13 19321 volare 1 6 19322 saniwho 1 7 19323 resaveci 1 8 19324 rade 1 4 19356 eyegate 1 7 19358 suii 1 4 19410 ioft 1 4 19397 chao 1 4 19387 anticipa 1 8 19388 extenunless 1 11 19389 sacrido 1 7 19390 carmichaela 1 11 19392 mimor 1 5 19393 bedtions 1 8 19394 mosiac 1 6 19395 nrany 1 5 19396 departgestion 1 13 19398 gairo 1 5 19384 messaore 1 8 19399 everycommunity 1 14 19400 watanga 1 7 19401 preseries 1 9 19402 baccalaurette 1 13 19403 faumi 1 5 19405 douthe 1 6 19406 prille 1 6 19408 peogood 1 7 19409 nebber 1 6 19386 unreliarect 1 11 19383 awaywhen 1 8 19359 sepaworld 1 9 19371 treastirer 1 10 19360 meantheir 1 9 19361 aplowed 1 7 19362 missionnoon 1 11 19363 womengave 1 9 19364 genwe 1 5 19366 believersalso 1 13 19367 sewith 1 6 19368 durenter 1 8 19369 serness 1 7 19372 thenceto 1 8 19382 unfavoris 1 9 19373 e'cientlida 1 11 19374 uct 1 3 19375 thingsin 1 8 19376 matanavat 1 9 19377 oeta 1 4 19378 vaiue 1 5 19379 sabforth 1 8 19380 preslege 1 8 19381 laorn 1 5 54011 wagonmaker 1 10 [53691 rows x 3 columns]
In [15]:
title = 'RH'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 10, 2, 'count')
print(results)
Summary for RH: spell_error count word_length 228574 tion 5691 4 528644 'the 5093 4 64390 brn 3962 3 359021 ment 2885 4 385865 pre 2872 3 128283 seventhday 2847 10 601139 chas 2837 4 78614 'of 2796 3 309121 ets 2249 3 291436 eze 2209 3 579891 mal 2047 3 52843 'to 2030 3 332463 ahd 1988 3 209212 'and 1824 4 674347 sabbathschool 1771 13 642599 aro 1622 3 28185 tions 1538 5 88323 sel 1511 3 194290 'be 1475 3 366775 ence 1386 4 360182 ent 1320 3 29268 thi 1237 3 501423 ers 1234 3 4367 'in 1202 3 414567 ments 1155 5 599375 ver 1075 3 532312 tbe 1042 3 448553 ple 1040 3 65398 ble 1026 3 107355 ofthe 998 5 278367 sabbathkeepers 978 14 579962 ful 960 3 342546 sabba 959 5 217399 'by 943 3 450318 'that 900 5 45873 'he 850 3 282692 ber 775 3 391606 thos 754 4 422447 ference 737 7 9245 ance 733 4 248739 jno 732 3 96380 'is 730 3 598240 'have 728 5 505083 overcomer 721 9 78756 twentyfive 713 10 394166 mis 710 3 372411 tem 701 3 211974 ith 690 3 142738 ity 686 3 56726 ole 678 3 327877 tle 656 3 23743 'for 655 4 597100 xxiiil 655 6 571960 ther 644 4 672889 ren 639 3 576377 inthe 623 5 111480 'his 605 4 200579 bas 600 3 115450 bno 597 3 660508 xviil 590 5 142972 nee 587 3 275006 dobney 580 6 580577 xxivl 564 5 504388 sabbaton 557 8 529044 ous 548 3 546784 eral 541 4 79050 ern 540 3 638354 tidende 534 7 634126 xxiil 533 5 641418 whitford 529 8 361997 eview 528 5 216059 tian 528 4 245632 ioo 522 3 478536 xviiil 517 6 221592 agt 515 3 10287 ots 506 3 416438 firstday 505 8 594672 'but 503 4 356069 anb 503 3 348815 'has 503 4 45888 ture 503 4 536842 whi 494 3 466292 soo 493 3 324209 frisbie 491 7 682045 ceived 491 6 378126 medo 487 4 143450 peo 477 3 350974 dren 472 4 225416 'as 469 3 436843 tiie 466 4 301953 ise 458 3 632528 micr 458 4 16554 ject 457 4 532950 ters 456 4 381391 ure 449 3 593726 'been 448 5 128332 'we 443 3 49350 fon 441 3 201984 susp 438 4 65221 irs 434 3 ... ... ... ... 192758 irm 11 3 192094 'happiness 11 10 595697 shumate 11 7 191245 itj 11 3 190774 'obey 11 5 596416 anumber 11 7 591710 rbirat 11 6 189820 monze 11 5 188954 debted 11 6 188767 upbn 11 4 596772 othat 11 5 188473 fufilled 11 8 186644 helieveth 11 9 193176 isees 11 5 594720 hoppie 11 6 193515 'officers 11 9 193808 bossert 11 7 594401 genf 11 4 194468 bam 11 3 194638 'district 11 9 195996 shouid 11 6 593485 vli 11 3 592592 puld 11 4 592456 newsom 11 6 196856 whoe 11 4 196913 gium 11 4 592364 esis 11 4 196922 increa 11 6 197124 ceptible 11 8 591847 e't 11 3 212304 nner 11 4 584729 nrk 11 3 213062 laof 11 4 225016 cutchan 11 7 226668 catastrophies 11 13 226624 diator 11 6 578695 autho 11 5 578704 tock 11 4 578972 stocker 11 7 225025 ttinto 11 6 225001 nicolaitans 11 11 213283 'ie 11 3 579297 beif 11 4 579409 dolorosa 11 8 224808 lawit 11 5 224395 'ni 11 3 224354 knowle 11 6 224245 'season 11 7 226887 lty 11 3 227156 vrt 11 3 578105 dli 11 3 228853 tiuth 11 5 229332 wilkie 11 6 576917 morni 11 5 230434 complishing 11 11 230443 'sign 11 5 576232 'difficult 11 10 231900 subjeot 11 7 232005 iaskell 11 7 232114 'spoken 11 7 232282 'conferences 11 12 232350 ponding 11 7 232429 eddyism 11 7 233242 terness 11 7 233305 'ir 11 3 223911 dehim 11 5 579797 virbrook 11 8 223697 'answer 11 7 217387 'possible 11 9 213510 tvittv 11 6 584305 'contains 11 9 584289 brom 11 4 584100 akt 11 3 213591 schbol 11 6 583743 carriacou 11 9 214442 publishi 11 8 214752 freeand 11 7 583459 polanders 11 9 215020 inary 11 5 215573 thousanddollar 11 14 583066 posure 11 6 582949 reatly 11 6 216962 tlds 11 4 218312 gions 11 5 579884 goor 11 4 218392 eartb 11 5 219767 coinmenced 11 10 220141 wito 11 4 220988 wara 11 4 221517 seim 11 4 221552 haller 11 6 581358 retu 11 4 221976 aftr 11 4 581267 'land 11 5 222401 beilhart 11 8 581094 characterthe 11 12 580738 whici 11 5 222731 pampangan 11 9 222872 nill 11 4 13 sabbatit 11 8 [14693 rows x 3 columns]
In [16]:
title = 'Sligo'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for Sligo: spell_error count word_length 249 sligon 36 6 1214 schwab 30 6 1300 mattingly 22 9 2318 kuppenheimer 20 12 1058 kamoda 15 6 1938 herzog 14 6 1488 lippart 14 7 586 styleplus 14 9 1388 dietel 14 6 2321 geibel 13 6 1156 rebok 13 5 2293 kimonas 12 7 49 flather 12 7 1849 chesnutt 11 8 1371 ahrens 11 6 1335 friedlander 11 11 1226 greiner 11 7 519 ailes 11 5 1973 quartette 10 9 2392 cardia's 10 8 1090 lenoa 10 5 2403 furnishers 10 10 725 slgonian 9 8 2402 woolgar 9 7 1477 grosner 9 7 2197 iverson 8 7 562 ott 8 3 151 gradye 8 6 2118 kollege 8 7 909 herbst 8 6 2233 minola 8 6 103 blackistone 8 11 1122 kupjian 8 7 712 hallowe'en 8 10 2294 chas 8 4 2316 newmyer 8 7 1129 zink 7 4 2115 battleford 7 10 74 schilberg 7 9 1968 estep 7 5 615 yoshihiro 7 9 558 klothes 7 7 1325 clapp 7 5 1430 tvedt 6 5 1448 voorhis 6 7 1485 nevius 6 6 302 botsford 6 8 1693 deitel 6 6 2098 boquets 6 7 1698 feldman 6 7 1889 jeffries 6 8 2000 dulany 6 6 1278 labrot 6 6 2347 brines 6 6 2394 hirsh's 6 7 1326 rozier 6 6 247 ryneal 6 6 788 muth 6 4 496 sevrens 6 7 1073 monsen 6 6 948 woodwardand 6 11 935 iden 6 4 1130 coyl 6 4 1016 duval 6 5 1243 harkins 6 7 94 preferwhether 5 13 1853 loasby 5 6 1662 carnig 5 6 1770 beamesderfer 5 12 667 gerhart 5 7 2351 greutman 5 8 1726 mercereau 5 9 2254 transtrom 5 9 757 ingeborg 5 8 1020 colea 5 5 1700 barto 5 5 765 treible 5 7 1529 nanking 5 7 592 dyoll 5 5 533 ablewhen 5 8 2001 llylel 5 6 1166 windon 5 6 512 wyche 5 5 1420 prohis 5 6 1357 resseguie 5 9 414 clemen 5 6 53 classmen 5 8 141 callier 5 7 710 washingtondc 4 12 2119 frankin 4 7 1255 maybelle 4 8 692 pleasants 4 9 98 liij 4 4 2353 kimber 4 6 2364 tunesassa 4 9 662 kaelin 4 6 650 yelland 4 7 622 paperyou 4 8 934 dimmock 4 7 1927 pre 4 3 943 willman 4 7 1887 tattbg 4 6 316 siagonian 4 9 1164 eulah 4 5 1568 accessable 4 10 1571 latrobes 4 8 1623 maye 4 4 1742 virbrook 4 8 1760 kewley 4 6 1890 mallatt 4 7 2050 workcleaning 4 12 468 munsch 4 6 1958 mattison 4 8 950 sangster 4 8 108 glickman 4 8 1989 ite 4 3 1996 idetta 4 6 2026 feely 4 5 564 ooletwah 4 8
In [17]:
title = 'SOL'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for SOL: spell_error count word_length 7320 bsl 79 3 2290 agl 51 3 6457 mutchler 44 8 6427 sabbatteans 38 11 3200 loth 38 4 262 tion 37 4 4502 'the 33 4 4139 farmakis 29 8 7683 ment 28 4 3089 saloonmen 27 9 3896 sundayclosing 26 13 4660 ioo 25 3 5003 wctu 24 4 1777 combinationthe 24 14 4242 kishineff 23 9 5299 faul 22 4 7843 schurman 20 8 717 selfgovernment 20 14 6981 rampolla 20 8 6735 sundayno 19 8 957 ourduty 19 7 6102 allister 19 8 6371 seventhday 19 10 1600 saloonkeepers 19 13 7365 theliquor 18 9 6441 socalled 17 8 180 platt 16 5 5179 'of 16 3 4775 tions 15 5 3487 pre 15 3 6932 saloonkeeper 15 12 1808 chas 14 4 2287 sundayenforcement 14 17 6541 thos 14 4 3115 birney 14 6 6835 'to 13 3 1835 tien 13 4 2934 temperanceand 13 13 1524 muskoka 12 7 4292 milman 12 6 7044 churchand 12 9 5162 guidi 12 5 4509 tsin 12 4 1593 grocerymen 11 10 5727 satolli 11 7 1617 ricans 11 6 270 sundaylaw 11 9 5720 birnie 11 6 1411 hine 10 4 3165 'with 10 5 1350 parte 10 5 7435 gohier 10 6 622 mala 10 4 5723 lawabiding 9 10 2205 godgiven 9 8 7552 postoffices 9 11 2536 employes 9 8 713 jailor 9 6 2307 munn 9 4 5603 farreaching 9 11 2014 'and 9 4 2006 twentyfive 9 10 1684 vires 9 5 4370 freethought 9 11 2087 brien 8 5 5168 thwing 8 6 3234 montns 8 6 1531 humbert 8 7 7028 tian 8 4 7015 ance 8 4 3122 cossa 8 5 6286 philipps 8 8 401 epist 8 5 5804 rican 8 5 3911 pendergast 8 10 2757 'that 8 5 3375 erty 8 4 4274 secularities 8 12 6888 'is 8 3 1040 ernment 8 7 4376 ljudge 7 6 3320 octabo 7 6 3210 octa'bo 7 7 7847 cormenin 7 8 7120 sparhawk 7 8 279 bergfeldt 7 9 7024 legislationa 7 12 6771 greenburg 7 9 1098 boutwell 7 8 7417 broussa 7 7 7630 weyler 7 6 3737 tke 7 3 5174 charta 7 6 7445 trevier 7 7 7439 beckler 7 7 5150 enactmentment 6 13 5105 seuleuz 6 7 3596 brownists 6 9 5237 martinelli 6 10 3878 hillis 6 6 ... ... ... ... 2223 polver 5 6 4203 americanists 5 12 1679 anagni 5 6 484 dechristianizing 5 16 4287 ther 5 4 3374 coun 5 4 4489 jaycox 5 6 4740 rin 5 3 2371 reconcentration 5 15 4546 priebe 5 6 2677 smyth 5 5 2556 benchmen 5 8 4602 chaingang 5 9 243 sabbathbreaking 5 15 215 tothe 5 5 1935 vannutelli 4 10 6654 indefeasable 4 12 7023 cohn 4 4 1682 goldwin 4 7 1742 'blue 4 5 1884 gebennus 4 8 2217 combinaion 4 10 1993 teris 4 5 6792 itis 4 4 6720 riis 4 4 2279 pecci 4 5 2251 buehler 4 7 2228 christion 4 9 1003 turlupins 4 9 1605 lowrie 4 6 501 eell 4 4 7851 oxman 4 5 7795 corario 4 7 7791 peoplethe 4 9 7753 ized 4 4 7733 issueii 4 7 288 proudfit 4 8 289 thingseither 4 12 7644 ters 4 4 363 ual 4 3 505 christain 4 9 1277 willi 4 5 590 shopman 4 7 769 papacythe 4 9 774 appli 4 5 852 fortynine 4 9 977 kensil 4 6 2450 implysa 4 7 1036 illne 4 5 1080 tional 4 6 1130 yalova 4 6 2384 segal 4 5 4766 ncopy 4 5 2527 protestante 4 11 5180 tll 4 3 4108 morrissey 4 9 4111 crescy 4 6 5588 ridpath 4 7 5443 crimmins 4 8 5416 sabath 4 6 5370 ence 4 4 5331 connectedly 4 11 5295 franke 4 6 4272 thibet 4 6 4508 'when 4 5 3732 julydecember 4 12 4532 firstday 4 8 4539 oth 4 3 5128 vali 4 4 5119 relig 4 5 4553 gottlieb 4 8 4557 hoppe 4 5 4690 violi 4 5 4854 mccorkle 4 8 4699 sir' 4 4 3767 greenstein 4 10 3675 por 4 3 6519 soo 4 3 6110 demagogism 4 10 2694 fora 4 4 6395 haye 4 4 2911 christthe 4 9 6364 'person 4 7 6346 ovr 4 3 3024 meeser 4 6 6222 sabbathkeeping 4 14 6140 mallalieu 4 9 3169 apos 4 4 3182 ipany 4 5 3522 ymeaornths 4 10 6069 ious 4 4 3199 pettingill 4 10 6010 sixmonths 4 9 5926 prive 4 5 5921 syar 4 4 3358 oneseventh 4 10 5799 hirsch 4 6 3428 gobernment 4 10 3473 tth 4 3 42 selfevident 4 11 [258 rows x 3 columns]
In [18]:
title = 'ST'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for ST: spell_error count word_length 143577 tion 2185 4 113227 'the 1527 4 183046 eze 1301 3 188020 altho 1275 5 6577 ment 1184 4 23300 pre 791 3 194004 ets 791 3 49006 'of 782 3 3487 sel 778 3 17579 tions 614 5 145305 mal 565 3 199614 'to 543 3 72990 aro 534 3 131547 'and 531 4 41155 ments 497 5 158770 chas 451 4 11333 ence 431 4 80289 seventhday 392 10 145362 ful 370 3 95919 ers 358 3 5804 ance 354 4 212384 fbr 340 3 62335 ple 340 3 40743 ble 325 3 31478 stuttle 316 7 101645 ity 313 3 63492 'that 303 5 204350 sabbathschool 296 13 2720 'in 287 3 121226 thoroly 266 7 135817 tian 263 4 182936 'em 262 3 7277 ent 259 3 124363 geikie 253 6 130927 igns 250 4 64628 synagog 240 7 176478 thruout 239 7 60157 'is 237 3 139992 gigno 234 5 67187 ofthe 233 5 28654 tht 226 3 97836 sabbaton 224 8 191291 ber 213 3 137965 cigaret 204 7 218177 clure 199 5 113457 ous 199 3 203045 thi 197 3 1568 dren 196 4 20492 ure 194 3 42426 gilfillan 193 9 107206 tle 192 3 28458 mis 191 3 141254 allister 189 8 122747 employes 188 8 122164 'be 178 3 183217 lld 178 3 115487 tbe 175 3 143065 inthe 175 5 120831 neander 166 7 186303 ther 163 4 65198 arv 163 3 105796 cruden 157 6 14795 'for 157 4 111276 mandments 152 9 49084 twentyfive 149 10 42696 moneyorders 149 11 120282 gign 147 4 98269 overcomer 147 9 4852 thoro 147 5 51282 ioo 146 3 76415 robb 145 4 157667 ver 142 3 209182 ceived 142 6 172962 cigarets 142 8 28556 'he 140 3 90237 'neath 139 6 124562 eral 139 4 115900 ters 139 4 115619 socalled 138 8 110014 nal 138 3 92821 sionary 137 7 133260 ith 137 3 111835 tem 136 3 17679 'not 136 4 108430 ise 135 3 18098 ght 135 3 141626 'as 134 3 144909 'it 132 3 203017 sions 130 5 162787 thos 130 4 89982 peo 129 3 49140 ures 129 4 22520 'by 127 3 104369 tite 125 4 72036 ished 124 5 54255 ary 123 3 133856 sus 123 3 157613 sigjts 123 6 59052 eousness 123 8 193729 mony 123 4 ... ... ... ... 84442 serviee 4 7 167637 serrant 4 7 166845 sorrowless 4 10 85824 'red 4 4 85838 somo 4 4 166393 merse 4 5 166074 calledto 4 8 86829 nothwith 4 8 86825 messager 4 8 166150 amples 4 6 166161 noother 4 7 86763 barra 4 5 166207 orach 4 5 166263 meeti 4 5 86701 wricox 4 6 86672 errys 4 5 86640 earlie 4 6 86600 'coo 4 4 166371 godemark 4 8 166399 denarii 4 7 85965 thecharacter 4 12 86541 itselfas 4 8 86536 excus 4 5 86434 thegood 4 7 86424 'turn 4 5 86380 clesar 4 6 86337 secute 4 6 166569 thehighest 4 10 86140 zangwill 4 8 86087 studen 4 6 86047 derous 4 6 86033 kolhapur 4 8 166725 'command 4 8 166733 bleness 4 7 167650 alzog 4 5 167675 conditiona 4 10 82560 owu 4 3 84404 onment 4 6 168478 rtonement 4 9 168551 ishe 4 4 83111 jscellaneous 4 12 168593 oursel 4 6 168611 tijles 4 6 168649 saintsa 4 7 83077 acrs 4 4 83064 nino 4 4 168705 brabourne 4 9 168721 cribed 4 6 168729 aiwa 4 4 83052 linde 4 5 83016 'please 4 7 83011 llu 4 3 168852 turtullian 4 10 82972 amsdorf 4 7 168854 imbe 4 4 168881 'indeed 4 7 82899 'communications 4 15 82880 thgm 4 4 82842 riously 4 7 82796 sunto 4 5 169091 sethe 4 5 169093 imself 4 6 82651 sau 4 3 169148 beasee 4 6 169205 'husband 4 8 82581 cfesar 4 6 82569 weilheimer 4 10 168453 oty 4 3 83160 grimage 4 7 168395 fbllow 4 6 168068 esculapius 4 10 84374 nually 4 6 84274 sunclay 4 7 167732 ipr 4 3 167757 greatand 4 8 84241 orby 4 4 84223 vati 4 4 84068 wrrn 4 4 84064 izi 4 3 84043 pecul 4 5 83925 jenin 4 5 83717 whieli 4 6 168014 by' 4 3 83685 protestingly 4 12 168101 unimpeached 4 11 168389 worldof 4 7 83613 efir 4 4 168119 hagios 4 6 168150 entree 4 6 168190 hothe 4 5 83507 destinyof 4 9 83463 pastthe 4 7 83409 midyat 4 6 168270 testhe 4 6 168271 sery 4 4 83407 vergeze 4 7 83403 moffitt 4 7 168315 yosemitevalley 4 14 83291 salvaand 4 8 109488 tomer 4 5 [13500 rows x 3 columns]
In [19]:
title = 'SUW'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for SUW: spell_error count word_length 33462 bfl 912 3 2585 agts 838 4 30115 chas 433 4 33942 ords 415 4 10650 bracy 289 5 15563 vagh 282 4 26188 wks 264 3 14101 billups 241 7 17041 chastain 238 8 22054 lennan 233 6 33542 seventhday 219 10 5501 peevy 210 5 18471 schroader 205 9 28371 reichenbach 205 11 33473 ppe 203 3 21102 chenault 193 8 22854 colrey 191 6 4971 'the 191 4 1757 tew 175 3 17521 sof 172 3 29186 ppp 170 3 19603 allman 164 6 34911 thos 157 4 9021 tion 149 4 19270 manous 147 6 28960 ern 138 3 16411 winkler 132 7 17156 hustburg 131 8 28907 griffiths 129 9 18416 bfi 127 3 24703 ference 125 7 31331 lura 122 4 29503 cannada 121 7 19487 ntp 113 3 3918 allran 113 6 2744 cennessee 112 9 17989 rayford 106 7 5040 parkins 104 7 28625 'of 98 3 2688 bodwell 97 7 9029 morphew 96 7 1811 mis 95 3 16723 sabbathschool 93 13 22797 ioo 92 3 14794 ence 90 4 19497 sofp 88 4 15219 deliv'd 86 7 11173 berdon 85 6 16527 ewald 84 5 25736 deliv 84 5 19324 millar 84 6 7666 hirst 78 5 25611 whitford 78 8 30371 pre 77 3 28301 charlsey 76 8 29340 ridder 76 6 5655 wor 76 3 23472 elhany 72 6 34715 memb 70 4 17905 minnis 70 6 2890 romines 69 7 25891 womack 69 6 7571 'to 69 3 32592 krauss 69 6 21563 reiber 68 6 16221 ment 67 4 25313 jno 67 3 18425 sherer 67 6 18212 parizetta 67 9 18671 perthia 66 7 2099 achenbach 65 9 17520 ber 64 3 18144 ers 64 3 28746 'and 64 4 9210 ellabama 63 8 3500 'in 62 3 33738 tri 61 3 12760 frisby 60 6 24067 stoc 60 4 19041 ypmv 60 4 20909 lettie 59 6 19234 totalsa 59 7 1025 garrigan 59 8 28737 twentyfive 57 10 2461 neill 57 5 14968 cheshier 57 8 15118 sewellton 56 9 19583 lanier 56 6 2544 shasky 56 6 14420 drbr 56 4 20272 leod 56 4 21808 ppv 56 3 32096 sie 55 3 29980 bpi 54 3 4938 sellars 52 7 6275 pendas 51 6 29296 woodall 51 7 12911 elford 51 6 25814 sabbathkeepers 51 14 22553 walbert 50 7 ... ... ... ... 28427 gesting 4 7 7778 thp 4 3 7720 'till 4 5 7681 arkebauer 4 9 7677 wou 4 3 28546 'goo 4 4 28563 urday 4 5 28594 'three 4 6 7630 periences 4 9 7603 rti 4 3 28642 'see 4 4 7577 sani 4 4 7536 ednesday 4 8 28763 boox 4 4 28797 ures 4 4 9804 seuenth 4 7 26364 mayde 4 5 12670 wasteless 4 9 11918 tennesssee 4 10 11908 desir 4 5 11877 patzkowski 4 10 11727 dence 4 5 11623 llie 4 4 11512 tablished 4 9 24591 conierence 4 10 24635 axwm 4 4 11423 throughthe 4 10 11392 wdr 4 3 11364 iana 4 4 24706 encour 4 6 11341 pebruary 4 8 11208 wth 4 3 11138 elle 4 4 24854 truthladen 4 10 24855 twa 4 3 11097 contribs 4 8 11914 mura 4 4 24449 o'erflow 4 8 24962 'given 4 6 24435 gartley 4 7 12665 recieved 4 8 24127 sse 4 3 24137 isters 4 6 24143 binks 4 5 24188 us' 4 3 12401 ellabatna 4 9 24200 oin 4 3 12382 reso 4 4 12314 loinstana 4 9 12280 retaries 4 8 24285 gra 4 3 24323 wnorwood 4 8 12226 contro 4 6 12185 vayne 4 5 12169 churche 4 7 12102 oodsmark 4 8 12037 pvenue 4 6 11017 seruant 4 7 24966 ited 4 4 26356 welltrained 4 11 10597 haue 4 4 10330 bof 4 3 10276 mangin 4 6 10242 misssionary 4 11 25922 sath 4 4 25947 'their 4 6 10121 ftw 4 3 26048 soutitern 4 9 10111 denomi 4 6 10056 frf 4 3 26155 alister 4 7 26157 sfoc 4 4 10016 fausset 4 7 26258 nealy 4 5 26269 ized 4 4 26271 oneof 4 5 9922 spearwk 4 7 26306 andit 4 5 25726 hree 4 4 25674 jonesbf 4 7 24968 stn 4 3 10608 asse 4 4 11008 notia 4 5 11001 zeichen 4 7 25084 bef 4 3 10963 psr 4 3 10912 idi 4 3 10910 thereis 4 7 25259 twould 4 6 25284 'experience 4 11 25312 profes 4 6 25340 delied 4 6 25395 tennes 4 6 10754 fordbr 4 6 10752 ect 4 3 25592 shornburg 4 9 10680 essary 4 6 10636 adkisson 4 8 10614 fel 4 3 9447 ceeded 4 6 [2098 rows x 3 columns]
In [20]:
title = 'TCOG'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for TCOG: spell_error count word_length 5831 'the 106 4 8140 eze 59 3 2897 mal 55 3 2492 'of 51 3 4803 tbe 45 3 6006 mayta 45 5 6951 scudder 40 7 2630 'and 39 4 8792 'to 38 3 7083 agtte 36 5 6087 missi 35 5 8918 seventhday 33 10 7709 hsi 33 3 8872 hasan 28 5 71 epartment 27 9 7036 cburth 25 6 7958 hunchy 24 6 3343 cburtb 24 6 4140 'in 24 3 2122 tion 22 4 1977 'for 22 4 4553 pre 21 3 4260 'be 18 3 1161 puno 18 4 5237 neesima 17 7 2929 outschools 17 10 6241 cburcb 17 6 9194 metlakahtla 15 11 6846 crehore 14 7 9096 tne 14 3 7032 perces 13 6 9914 nez 13 3 7168 thi 13 3 5301 tay 13 3 3281 occum 12 5 7558 idona 12 5 1768 soulwinning 12 11 2374 goin 12 4 7781 ise 12 3 2289 'he 12 3 8126 jule 12 4 3160 buresala 11 8 5325 alf 11 3 7956 'em 11 3 2682 'all 11 4 10135 legiac 11 6 8869 dilawur 11 7 9001 'was 11 4 1750 gon 11 3 229 him' 11 4 1439 obookiah 10 8 2745 'his 10 4 5913 you' 10 4 2341 johan 10 5 7906 seino 10 5 2619 twentyfive 10 10 9331 aette 10 5 3517 serkey 10 6 3615 'that 10 5 8115 nyasaland 10 9 3939 wantedyoung 10 11 9895 ment 10 4 5258 'work 9 5 9799 solusi 9 6 5520 muramatsu 9 9 9260 phuloo 9 6 3598 them' 9 5 3918 'they 9 5 6033 sangster 9 8 617 'one 9 4 6894 hoa 9 3 8179 finster 9 7 2926 selfdenial 9 10 7601 'as 9 3 7823 'church 9 7 1506 neddie 9 6 2307 'it 9 3 8059 thei 9 4 3040 turvy 8 5 6504 litsi 8 5 7961 cburrb 8 6 3401 hetty 8 5 5289 greatorex 8 9 9736 guianas 8 7 68 havergal 8 8 5418 it' 8 3 2137 mis 8 3 2325 abu 8 3 4076 tidens 8 6 9081 ofthe 8 5 4564 'will 8 5 2473 god' 8 4 1144 tosti 8 5 3870 mehemet 8 7 1275 tiie 7 4 1103 thome 7 5 297 nee 7 3 2514 pietro 7 6 9793 floy 7 4 2688 mit 7 3 ... ... ... ... 1411 thechurch 4 9 8200 zwemer 4 6 9414 'second 4 7 9759 oldfashioned 4 12 9788 'an 4 3 1383 grose 4 5 564 cooey 4 5 9149 thosewho 4 8 458 thd 4 3 2254 disfellowshiping 4 16 713 brower 4 6 826 ent 4 3 843 'missionary 4 11 9462 'some 4 5 846 servi 4 5 849 fiske 4 5 9630 'most 4 5 9633 herzog 4 6 8969 brouilette 4 10 8921 pitania 4 7 891 ments 4 5 926 faraoa 4 6 1060 cleland 4 7 9692 'said 4 5 1176 hannington 4 10 9745 notruction 4 10 1181 misiones 4 8 8767 chri 4 4 517 nickie 4 6 9769 'would 4 6 8678 hav 4 3 577 kno 4 3 7373 sionarp 4 7 2274 grythyttehed 4 12 5544 fon 4 3 6369 qur 4 3 2945 aleander 4 8 2953 godward 4 7 6235 spe 4 3 6180 'asked 4 6 6140 hini 4 4 2968 ful 4 3 3045 fiveminute 4 10 3071 ingruction 4 10 3089 chau 4 4 5840 'when 4 5 3124 ood 4 3 3125 bao 4 3 5685 wil 4 3 3170 week' 4 5 6422 farningham 4 10 3183 cial 4 4 3188 malekula 4 8 3223 papeite 4 7 5365 conkey 4 6 3268 vendek 4 6 3303 threeminute 4 11 3607 hla 4 3 4730 fello 4 5 4671 'time 4 5 3752 'should 4 7 4518 orno 4 4 3833 ist 4 3 4032 afterwhile 4 10 4166 do' 4 3 2894 peo 4 3 6435 katagiri 4 8 2278 ole 4 3 4061 sabati 4 6 2329 kading 4 6 7896 tsui 4 4 7840 biddings 4 8 7826 elo 4 3 2363 'our 4 4 7808 'good 4 5 7806 speak' 4 6 2420 imo 4 3 7701 barotseland 4 11 7643 messagefilled 4 13 7636 us' 4 3 7616 mur 4 3 2532 kikuvi 4 6 2539 selfsacrifice 4 13 7347 hurch 4 5 6476 iors 4 4 7184 'had 4 4 7172 tohouse 4 7 2610 sunshiners 4 10 7129 sions 4 5 7125 outschool 4 9 7045 'two 4 4 2770 yekichi 4 7 6979 ence 4 4 2787 guire 4 5 6919 uplook 4 6 6909 'under 4 6 6882 ous 4 3 6704 tae 4 3 6598 hildah 4 6 5105 testi 4 5 [331 rows x 3 columns]
In [21]:
title = 'TMM'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for TMM: spell_error count word_length 4361 raratonga 43 9 3409 buluwayo 37 8 1260 stauffer 20 8 4101 carthy 20 6 1743 kalaka 20 6 1813 karmatar 20 8 2049 hausaland 19 9 2626 okohira 18 7 6066 hasegawa 18 8 4942 schwantes 17 9 2234 basle 17 5 5005 couva 17 5 299 sul 17 3 5688 sabbathschool 16 13 5871 raiatea 15 7 5101 seventhday 15 10 5750 tongatabu 15 9 3775 ioo 14 3 4909 helsingfors 14 11 1087 zambesi 14 7 1536 parana 13 6 2978 mangaia 13 7 4326 ventists 13 8 4014 shiba 12 5 3880 rosas 12 5 2167 ruatan 12 6 5301 crespo 12 6 72 gosmer 12 6 4877 arrowauks 11 9 1336 mis 11 3 1331 ricans 11 6 2965 hungaria 11 8 2379 okahira 11 7 5798 truxillo 11 8 5355 spreckels 11 9 3666 'the 10 4 308 shakker 10 7 4835 nonebala 10 8 339 juticalpa 10 9 5495 talafo 10 6 2193 caribbees 10 9 3410 brethern 9 8 392 newyork 9 7 4916 cherentes 9 9 272 eromanga 9 8 3433 asuncion 9 8 2132 muleback 9 8 200 tion 9 4 4214 kupavula 9 8 2718 palmquist 9 9 3965 sionary 8 7 1435 doble 8 5 5919 henton 8 6 28 esthonians 8 10 1905 cina 8 4 1858 dolphijn 8 8 2178 bluefields 8 10 1764 kumpel 8 6 6168 seamans 7 7 3384 esthonian 7 9 1846 rican 7 5 3674 tsin 7 4 332 aitutaki 7 8 760 neuva 7 5 3773 iery 7 4 2781 skaguay 7 7 3861 montg 7 5 1214 cakobau 7 7 2631 loth 7 4 1225 pellice 7 7 5267 makatea 7 7 3289 lettonian 7 9 3583 crowther 7 8 5144 fukuin 7 6 1472 bootooba 7 8 1498 chas 7 4 3980 mandioca 7 8 2508 agt 6 3 2861 pre 6 3 5027 eze 6 3 4596 escobar 6 7 1098 parvo 6 5 53 ary 6 3 634 pauliasi 6 8 5493 tal 6 3 5490 jno 6 3 5377 learsy 6 6 894 kwangsi 6 7 4641 torre 6 5 996 multum 6 6 984 tse 6 3 2018 ellery 6 6 5224 helvecia 6 8 4830 peverini 6 8 1355 fel 6 3 5054 goteborg 6 8 1519 tien 6 4 3266 umkupavula 6 10 5235 fte 6 3 5236 naini 5 5 3697 lettonians 5 10 3778 fonds 5 5 5592 weekapril 5 9 5643 olancho 5 7 3852 tions 5 5 5843 sabbathkeepers 5 14 5847 handsworth 5 10 5864 titikavaka 5 10 6109 readingsabbath 5 14 4146 blancher 5 8 3305 weekdecember 5 12 5350 ladrone 5 7 16 marash 5 6 6208 ramabai 5 7 521 stanmore 5 8 1563 helouan 5 7 2157 por 5 3 1460 levuka 5 6 2169 dwyer 5 5 892 balada 5 6 2260 marchisio 5 9 2267 pago 5 4 2333 tung 5 4 2557 moko 5 4 2575 chaux 5 5 2853 owari 5 5 823 adamson 5 7 2892 sundayschool 5 12 2949 makomp 5 6 282 toltecs 5 7 229 caribbee 5 8 2948 weekjuly 5 8 5076 nyanza 4 6 5061 bilaspur 4 8 6196 moana 4 5 6177 levu 4 4 1246 roko 4 4 1632 ostlund 4 7 1456 afric 4 5 241 fulahs 4 6 1383 'to 4 3 1357 maritzburg 4 10 1250 nection 4 7 1710 kalopothakes 4 12 5128 robie 4 5 1056 tral 4 4 1220 temne 4 5 319 hausfreund 4 10 445 bedros 4 6 453 canje 4 5 852 weekjanuary 4 11 844 bethuks 4 7 4988 gth 4 3 5496 weekmay 4 7 478 ver 4 3 790 curityba 4 8 705 indo 4 4 606 philopappos 4 11 540 arrowauk 4 8 536 ass'n 4 5 1753 taquary 4 7 3242 signes 4 6 1834 mal 4 3 2038 stellenbosch 4 12 3898 witte 4 5 2668 mollendo 4 8 2674 sentative 4 9 2712 guanaja 4 7 2827 colvin 4 6 3713 sepe 4 4 3649 nickerie 4 8 3585 barotse 4 7 3116 savu 4 4 3559 pharoah 4 7 3543 kwang 4 5 3123 preceeding 4 10 3155 ilissionary 4 11 3175 verbeck 4 7 3191 galletas 4 8 2364 bardizag 4 8 2353 hepatization 4 12 4019 pontypridd 4 10 2159 cantlie 4 7 2079 vou 4 3 2087 onehalf 4 7 4851 comandi 4 7 3336 thework 4 7 4819 vavau 4 5 4745 selfsupporting 4 14 4563 voz 4 3 4035 weekseptember 4 13 4457 kalmucks 4 8 2205 seventyfive 4 11 2240 weekfebruary 4 12 4288 geraes 4 6 4287 stoever 4 7 4248 chineseman 4 10 2139 sarmiento 4 9
In [22]:
title = 'WMH'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for WMH: spell_error count word_length 6161 sabbathschool 170 13 2631 presidenta 75 10 5854 secretarym 61 10 3801 treasurere 61 10 581 numbersin 53 9 5936 numbessin 52 9 1071 horr 39 4 3898 'the 36 4 5002 wyla 32 4 2785 kee 32 3 5499 seventhday 32 10 3796 presidentm 32 10 195 blendon 32 7 479 brower 31 6 5641 harnden 30 7 3945 cleora 27 6 4037 ioo 25 3 2456 sabbathschools 25 14 5774 nunica 23 6 2841 chas 23 4 228 tion 22 4 5964 psa 20 3 5893 'to 20 3 3277 loth 20 4 2148 numbess 18 7 6270 hoffstra 18 8 910 michi 18 5 5207 drury 18 5 1776 'and 17 4 2256 convis 16 6 6634 ment 16 4 4663 ence 16 4 5567 secretarys 15 10 6345 sabbathkeepers 15 14 2724 editov 15 6 3276 diamondale 15 10 1954 mal 15 3 566 treasurerd 15 10 1692 'of 14 3 3248 numbeesin 14 9 1837 ainger 14 6 6399 'field 14 6 4656 vinancial 14 9 5750 numbepsin 13 9 3498 ith 13 3 5975 ctory 13 5 5885 ass'n 12 5 2315 myrta 12 5 5287 bilz 12 4 436 gathereti 12 9 5539 dirlctory 12 9 4275 messer 11 6 2413 'that 11 5 2048 benefitted 11 10 3563 see'y 11 5 1319 'for 11 4 441 hevald 11 6 1180 foy 11 3 2556 harriot 10 7 3616 rgo 10 3 5360 ereth 10 5 2568 ist 10 3 1568 almeda 10 6 212 fvom 9 4 6740 gatereth 9 8 6019 onehalf 9 7 2759 'in 9 3 2671 editop 9 6 1337 sendebud 9 8 3540 gravelle 9 8 1767 twentyfive 9 10 1997 consistant 8 10 485 tgo 8 3 6273 altho 8 5 5410 eze 8 3 5276 ordis 8 5 6066 'be 8 3 2847 thr 8 3 1861 numbevsin 8 9 3936 oth 8 3 6702 soo 8 3 500 ers 8 3 1321 ple 8 3 5465 ference 8 7 1598 mchugh 8 6 1951 palmiter 8 8 5277 allister 8 8 1425 mis 8 3 199 educationa 8 10 3298 garton 7 6 3376 phippeny 7 8 366 vield 7 5 5482 schooi 7 6 6295 mavgavet 7 8 5846 ance 7 4 3426 ilee 7 4 3032 pre 7 3 2216 whi 7 3 2235 hof 7 3 5126 hsi 7 3 ... ... ... ... 1051 allthe 6 6 1232 numbewsin 6 9 2491 thro 6 4 352 hausfreund 6 10 3431 veap 6 4 1800 tobe 6 4 1970 selfdenial 6 10 6183 whitford 5 8 5582 swahn 5 5 6100 prpartnunt 5 10 4920 vicepresident 5 13 4989 approbativeness 5 15 984 ilaughey 5 8 5051 vaktare 5 7 2102 educa 5 5 5374 gth 5 3 1325 scandanavian 5 12 2485 arnadon 5 7 4769 sions 5 5 1486 sooncoming 5 10 2455 cudney 5 6 5452 ssued 5 5 1652 matthewson 5 10 5771 iio 5 3 6250 hotstra 5 7 2338 seventyfive 5 11 2842 numbeasin 5 9 3096 medicial 5 8 3499 sel 5 3 6756 tti 5 3 149 rooo 5 4 3895 sundayschool 5 12 6335 natches 5 7 4001 thallie 5 7 3245 numbessln 5 9 591 ments 5 5 550 ent 5 3 3078 raiatea 5 7 4188 ished 5 5 444 kamstra 4 7 6573 haugbev 4 7 5692 bea 4 3 1751 'twixt 4 6 6753 myrtie 4 6 255 isthe 4 5 281 iooo 4 4 339 numbensin 4 9 1554 gatmereth 4 9 6490 alloted 4 7 6292 wil 4 3 1405 accomodate 4 10 6388 ass't 4 5 6257 newago 4 6 5934 'is 4 3 398 stra 4 4 1263 igth 4 4 5953 'this 4 5 892 conven 4 6 1154 nee 4 3 876 medler 4 6 3525 christlicher 4 12 1873 gress 4 5 3287 afew 4 4 2951 pri 4 3 2981 committe 4 8 4321 whereever 4 9 4272 sionary 4 7 3162 wer 4 3 3977 onethird 4 8 3239 greenman 4 8 3306 terest 4 6 4795 editott 4 7 3354 ool 4 3 3797 tennesee 4 8 3424 ung 4 3 3671 'great 4 6 3656 nrws 4 4 3649 ject 4 4 3586 tes 4 3 4794 thi 4 3 2758 'school 4 7 1999 ful 4 3 5198 'them 4 5 5468 watchcare 4 9 2093 'us 4 3 2115 'are 4 4 2293 twentythree 4 11 3501 'work 4 5 5270 ebucattonal 4 11 5229 hevaid 4 6 5193 'at 4 3 4853 edu 4 3 5141 igan 4 4 2558 eachern 4 7 2562 lle 4 3 5117 selfsupporting 4 14 5062 'as 4 3 2680 reapeti 4 7 4932 mrse 4 4 6797 tencent 4 7 [213 rows x 3 columns]
In [23]:
title = 'YI'
print("Summary for {}:".format(title))
df = results_to_df(title)
results = query_df(df, 3, 2, 'count')
print(results)
Summary for YI: spell_error count word_length 85050 sabbathschool 607 13 3429 'the 408 4 65800 'em 399 3 65897 eze 316 3 45605 xil 315 3 43104 ver 302 3 49812 sel 254 3 30373 tion 227 4 31970 mal 214 3 44178 'of 211 3 63298 agt 205 3 29354 'to 197 3 98016 'neath 180 6 44266 twentyfive 168 10 19616 'and 168 4 40114 ioo 159 3 20722 pre 152 3 22006 guire 151 5 25382 'he 149 3 2950 'cause 148 6 33873 iden 148 4 11323 'be 138 3 50376 goin 133 4 11590 ass't 131 5 70800 sangster 130 8 72425 s'pose 121 6 69839 milly 120 5 48903 yovt 112 4 15826 peloubet 110 8 96169 ome 110 3 32018 ful 109 3 72003 xiil 109 4 28669 hsi 109 3 44649 ettez 106 5 28039 stuttle 105 7 5881 ment 103 4 5158 lxv 102 3 44118 chas 101 4 2433 'in 100 3 28295 yovti 100 5 18041 lviii 99 5 30283 kibbin 99 6 41011 rosilla 97 7 86980 structor 92 8 83373 'his 91 4 12976 ili 90 3 96112 tle 90 3 24063 sha 90 3 48821 'mid 89 4 20073 'by 87 3 94355 lxiii 87 5 81501 georgie 84 7 22359 hutt 84 4 23894 micr 83 4 43960 it' 82 3 88334 'but 81 4 44704 onehalf 80 7 26674 ers 80 3 54236 'most 78 5 13223 r'y 77 3 53077 susy 77 4 60361 me' 76 3 33151 'round 76 6 42433 'have 74 5 82382 gertie 74 6 55587 howson 74 6 82149 'way 71 4 57145 'that 71 5 72128 seventhday 71 10 14816 kee 70 3 65375 'ye 70 3 70666 sundayschool 69 12 4832 'bout 69 5 79465 conybeare 68 9 38125 marden 68 6 25282 mis 67 3 58752 teddie 67 6 66264 riis 67 4 29182 nyassaland 67 10 54249 'is 67 3 26458 nanking 66 7 3084 neesima 64 7 15645 tions 64 5 91428 sabbathkeepers 64 14 27307 ther 64 4 66474 'was 62 4 31600 ole 62 3 33259 cunliffe 62 8 6227 zambesi 61 7 63809 ets 60 3 66094 soo 60 3 16738 'twill 60 6 40810 'had 60 4 70250 twentyfour 59 10 56162 ple 59 3 60997 ber 59 3 59428 liii 58 4 36197 gon 58 3 13131 'for 58 4 21637 sus 57 3 ... ... ... ... 20425 months' 4 7 66786 nrt 4 3 66913 countri 4 7 66798 alie 4 4 66804 appius 4 6 66854 pleag 4 5 20832 whotn 4 5 66879 noss 4 4 66884 sophronia 4 9 20750 ccesarea 4 8 66938 feneberg 4 8 67170 ivas 4 4 20743 whenthe 4 7 20684 light' 4 6 20638 illfated 4 8 20587 'nom 4 4 20500 sanyasi 4 7 20481 sengers 4 7 67168 moung 4 5 65581 ansdell 4 7 65464 wih 4 3 63449 doren 4 5 64307 pressive 4 8 22753 ndt 4 3 64186 missio 4 6 64203 hoppy 4 5 22691 ungratified 4 11 22633 eath 4 4 64287 medhurst 4 8 64293 ninus 4 5 64308 schule 4 6 64072 culti 4 5 22624 auber 4 5 64357 leddy 4 5 22593 inmuotor 4 8 22559 aymar 4 5 22550 ifr 4 3 64522 cambo 4 5 22455 senales 4 7 64077 cuautemoch 4 10 63994 iolani 4 6 64603 abled 4 5 63747 thisis 4 6 63465 wic 4 3 63503 epworthian 4 10 63583 kap 4 3 23027 dolson 4 6 22963 coopersburgh 4 12 63693 blisses 4 7 63702 cellent 4 7 22962 shortland 4 9 63965 bertel 4 6 63807 sawa 4 4 22951 ister 4 5 22950 laon 4 4 63848 hattusil 4 8 22922 edvard 4 6 63900 paulonia 4 8 63944 nauplia 4 7 64577 namur 4 5 64700 lossing 4 7 65442 douly 4 5 21966 vealed 4 6 65091 squier 4 6 22076 adapte 4 6 65121 terial 4 6 22065 gohna 4 5 65201 trom 4 4 22021 ock 4 3 65218 nemorosa 4 8 65256 leutze 4 6 22078 gurdy 4 5 65265 titterington 4 12 21885 chriit 4 6 21875 rajputs 4 7 65359 orks 4 4 65371 printingoffice 4 14 21866 edny 4 4 65417 spiker 4 6 65079 jis 4 3 65031 think' 4 6 64745 'during 4 7 64881 constrainem 4 11 22405 vio 4 3 64764 playin 4 6 64769 fire' 4 5 64784 walburga 4 8 64806 representa 4 10 64858 tidende 4 7 64878 seveneighths 4 12 22331 lispings 4 8 22147 leadbetters 4 11 64907 gnd 4 3 64939 leontes 4 7 64941 worke 4 5 64942 ooks 4 4 64981 letow 4 5 64987 'cried 4 6 22233 eof 4 3 4 constraiheth 4 12 [6563 rows x 3 columns]
In [7]:
# %load shared_elements/system_info.py
import IPython
print (IPython.sys_info())
!pip freeze
{'commit_hash': '5c9c918', 'commit_source': 'installation', 'default_encoding': 'UTF-8', 'ipython_path': '/Users/jeriwieringa/miniconda3/envs/dissertation2/lib/python3.5/site-packages/IPython', 'ipython_version': '5.1.0', 'os_name': 'posix', 'platform': 'Darwin-16.1.0-x86_64-i386-64bit', 'sys_executable': '/Users/jeriwieringa/miniconda3/envs/dissertation2/bin/python', 'sys_platform': 'darwin', 'sys_version': '3.5.2 |Continuum Analytics, Inc.| (default, Jul 2 2016, ' '17:52:12) \n' '[GCC 4.2.1 Compatible Apple LLVM 4.2 (clang-425.0.28)]'} anaconda-client==1.5.5 appnope==0.1.0 argh==0.26.1 blinker==1.4 bokeh==0.12.3 boto==2.43.0 bz2file==0.98 chest==0.2.3 cloudpickle==0.2.1 clyent==1.2.2 dask==0.12.0 datashader==0.4.0 datashape==0.5.2 decorator==4.0.10 docutils==0.12 doit==0.29.0 gensim==0.12.4 Ghost.py==0.2.3 ghp-import2==1.0.1 gspread==0.4.1 HeapDict==1.0.0 httplib2==0.9.2 husl==4.0.3 ipykernel==4.5.2 ipython==5.1.0 ipython-genutils==0.1.0 ipywidgets==5.2.2 Jinja2==2.8 jsonschema==2.5.1 jupyter==1.0.0 jupyter-client==4.4.0 jupyter-console==5.0.0 jupyter-core==4.2.1 llvmlite==0.14.0 locket==0.2.0 Logbook==1.0.0 lxml==3.5.0 MacFSEvents==0.7 Mako==1.0.4 Markdown==2.6.7 MarkupSafe==0.23 mistune==0.7.3 multipledispatch==0.4.9 natsort==4.0.4 nb-anacondacloud==1.2.0 nb-conda==2.0.0 nb-conda-kernels==2.0.0 nb-config-manager==0.1.3 nbbrowserpdf==0.2.1 nbconvert==4.2.0 nbformat==4.2.0 nbpresent==3.0.2 networkx==1.11 Nikola==7.7.7 nltk==3.2.1 notebook==4.2.3 numba==0.29.0 numpy==1.11.2 oauth2client==4.0.0 odo==0.5.0 pandas==0.19.1 partd==0.3.6 path.py==0.0.0 pathtools==0.1.2 pexpect==4.0.1 pickleshare==0.7.4 Pillow==3.4.2 prompt-toolkit==1.0.9 ptyprocess==0.5.1 pyasn1==0.1.9 pyasn1-modules==0.0.8 pycrypto==2.6.1 Pygments==2.1.3 PyPDF2==1.25.1 PyRSS2Gen==1.1 python-dateutil==2.6.0 pytz==2016.10 PyYAML==3.12 pyzmq==16.0.2 qtconsole==4.2.1 requests==2.12.3 rsa==3.4.2 scipy==0.18.1 simplegeneric==0.8.1 six==1.10.0 smart-open==1.3.5 terminado==0.6 textblob==0.11.1 toolz==0.8.1 tornado==4.4.2 traitlets==4.3.1 Unidecode==0.4.19 watchdog==0.8.3 wcwidth==0.1.7 webassets==0.11.1 widgetsnbextension==1.2.6 ws4py==0.3.4 xarray==0.8.2 Yapsy==1.11.223